cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113632 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.

This page as a plain text file.
%I A113632 #16 Aug 30 2025 02:30:51
%S A113632 1,55,9217,280483,3378745,23803711,118513705,462945547,1512003793,
%T A113632 4303999495,10987654321,25678050355,55776799177,113924725903,
%U A113632 220792014745,408951042331,728121033505,1252121211607,2087920281313
%N A113632 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
%C A113632 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 = (x^11 - 1)/(x-1).
%H A113632 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F A113632 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
%F A113632 G.f.: (1+x*(45+x*(8712+x*(190668+x*(982290+x*(1543254+x*(784080+x*(116268+x*(3477+5*x)))))))))/(x-1)^10. - _Harvey P. Dale_, Mar 14 2011
%e A113632 a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 + 10*5^9 = 23803711 is prime.
%e A113632 a(30) = 1 + 2*30 + 3*30^2 + 4*30^3 + 5*30^4 + 6*30^5 + 7*30^6 + 8*30^7 + 9*30^8 + 10*30^9 = 202915112960761 is prime.
%t A113632 With[{eq=Total[Range[10](n^Range[0,9])]},Table[eq,{n,0,20}]] (* _Harvey P. Dale_, Mar 14 2011 *)
%Y A113632 Cf. A056578, A056579.
%K A113632 easy,nonn,changed
%O A113632 0,2
%A A113632 _Jonathan Vos Post_, Jan 14 2006