cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113648 A variant of Josephus Problem in which 2 persons are to be eliminated at the same time.

Original entry on oeis.org

1, 3, 6, 1, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 1, 3, 5, 7
Offset: 1

Views

Author

Satoshi Hashiba, Daisuke Minematsu and Ryohei Miyadera, Jan 15 2006

Keywords

Comments

a(n) is defined as follows. Write the numbers 1 through 2n in a circle, start at 1 and n+1. Cross off every other number until only one number is left. The process that starts with 1 should be the first at any stage. For example we cross off 2, n+2, 4, n+4, 6, n+6, .... The remaining number is a(n). This function is defined only for even arguments.

Examples

			For a(8): we are to cross off 2, 6, 4, 8, 7, 3, 5 and 1 is left. Therefore a(8) = 1.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley

Crossrefs

Cf. A006257.

Programs

  • Mathematica
    jose2[2] = 1; jose2[n_] := If[Mod[n, 4] == 0, If[jose2[n/2] <= (n/4), 2(n/4) + 2jose2[n/2] - 1, 2jose2[n/2] - 2(n/4) - 1], Which[jose2[(n + 2)/2] == 1, n/2, 1 < jose2[(n + 2)/2] < (n + 10)/4, 2jose2[(n + 2)/2] + (n - 2)/2 - 2, (n + 6)/4 < jose2[(n + 2)/2], 2jose2[(n + 2)/2] - (n + 8)/2]];

Formula

The sequence a(m) is defined for any even number m as follows: a(2) = 1. a(4*n) = 2*a(2*n) - 2*n - 1 (if a(2*n) > n) and a(4*n) = 2*a(2*n) + 2*n - 1 (if a(2*n) <= n). a(4*n+2) = 2*a(2*n+2) - 2*n - 5 (if a(2*n+2) >= n + 3), a(4*n+2) = 2*a(2*n+2) + 2*n - 2 (if n + 3 > a(2*n+2) >= 2), and a(4*n+2) = 2*n+1 (if a(2*n+2) = 1).