cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113675 Decimal expansion of 1/8991.

This page as a plain text file.
%I A113675 #13 Aug 01 2024 10:32:25
%S A113675 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,9,0,0,0,1,1,1,2,
%T A113675 2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,9,0,0,0,1,1,1,2,2,2,3,3,3,4,4,
%U A113675 4,5,5,5,6,6,6,7,7,7,8,8,9,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4
%N A113675 Decimal expansion of 1/8991.
%C A113675 1/(89...91) can produce this kind of sequence infinitely.
%D A113675 Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 60, 308.
%H A113675 <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
%F A113675 sqrt(576576576576576576576576576576576576576576576576576576) = 72*sqrt(111222333444555666777889000111222333444555666777889).
%F A113675 G.f.: x^3*(Sum_{i=0..27} floor((i+3)/3)*x^i + x^23 - 9*x^24*(1 + x + x^2 + 10*x^3/9))/(1 - x^27). - _Stefano Spezia_, Jul 31 2024
%e A113675 0.00011122233344455566677788900011...
%t A113675 m = 17; Sqrt[Apply[Plus, 576*Table[(10^3)^k, {k, 0, m}]]]
%t A113675 Join[{0,0,0},RealDigits[1/8991,10,120][[1]]] (* _Harvey P. Dale_, Apr 22 2012 *)
%Y A113675 Cf. A002264, A021895.
%K A113675 easy,cons,nonn
%O A113675 0,7
%A A113675 Daisuke Minematsu and _Ryohei Miyadera_, Jan 17 2006