cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113705 Inverse Moebius transform of powers of 10.

This page as a plain text file.
%I A113705 #12 May 25 2017 04:21:08
%S A113705 1,10,110,1010,10110,100010,1001110,10000010,100010110,1000001010,
%T A113705 10000100110,100000000010,1000001011110,10000000000010,
%U A113705 100000010000110,1000000000101010,10000000100010110,100000000000000010,1000000001001001110,10000000000000000010,100000000010000110110
%N A113705 Inverse Moebius transform of powers of 10.
%C A113705 A055895 to base 2.
%C A113705 The triangle formed by stacking the reversals of a(n) is A113704.
%C A113705 Using decimal positional notation, write a 1 at position d for all divisors d of n. All other digits are zeros and leading zeros are not permitted. - _Michael De Vlieger_, May 24 2017
%H A113705 Michael De Vlieger, <a href="/A113705/b113705.txt">Table of n, a(n) for n = 0..999</a>
%F A113705 a(n) = Sum_{k=0..n} if(mod(n, k)=0, 10^k, 0).
%F A113705 G.f.: Sum_{k>=1} 10^k*x^k/(1 - x^k). - _Ilya Gutkovskiy_, May 23 2017
%e A113705 From _Michael De Vlieger_, May 24 2017: (Start)
%e A113705 First 20 terms of a(n), replacing zeros with "." to more clearly show positions of 1s in positions corresponding to terms in row n of A027750. This chart also pertains to terms of A055895 written in binary.
%e A113705    n                    a(n)  A027750(n)
%e A113705    ---------------------------------------
%e A113705    0:                      1  {}
%e A113705    1:                     1.  1
%e A113705    2:                    11.  1,2
%e A113705    3:                   1.1.  1,3
%e A113705    4:                  1.11.  1,2,4
%e A113705    5:                 1...1.  1,5
%e A113705    6:                1..111.  1,2,3,6
%e A113705    7:               1.....1.  1,7
%e A113705    8:              1...1.11.  1,2,4,8
%e A113705    9:             1.....1.1.  1,3,9
%e A113705   10:            1....1..11.  1,2,5,10
%e A113705   11:           1.........1.  1,11
%e A113705   12:          1.....1.1111.  1,2,3,4,6,12
%e A113705   13:         1...........1.  1,13
%e A113705   14:        1......1....11.  1,2,7,14
%e A113705   15:       1.........1.1.1.  1,3,5,15
%e A113705   16:      1.......1...1.11.  1,2,4,8,16
%e A113705   17:     1...............1.  1,17
%e A113705   18:    1........1..1..111.  1,2,3,6,9,18
%e A113705   19:   1.................1.  1,19
%e A113705   20:  1.........1....11.11.  1,2,4,5,10,20 (End)
%t A113705 Table[If[n == 0, 1, Total[10^Divisors[n]]], {n, 0, 20}] (* or *)
%t A113705 Table[If[n == 0, 1, Sum[If[Mod[n, k] == 0, 10^k, 0], {k, n}]], {n, 0,
%t A113705   20}] (* or *)
%t A113705 Table[Boole[n == 0] + Total@ MapIndexed[Boole[Divisible[n, #1]]*10^First@ #2 &, Range@ n], {n, 0, 20}] (* or *)
%t A113705 Table[If[n == 0, 1, Function[d, FromDigits @Reverse@ ReplacePart[#, Map[# + 1 -> 1 &, d]] &@ ConstantArray[0, n + 1]]@ Divisors@ n], {n, 0, 20}]
%t A113705 (* _Michael De Vlieger_, May 24 2017 *)
%o A113705 (PARI) a(n) = if (n==0, 1, sum(k=1, n, if (! (n % k), 10^k))); \\ _Michel Marcus_, May 23 2017
%Y A113705 Cf. A027750, A055895, A113704.
%K A113705 easy,nonn
%O A113705 0,2
%A A113705 _Paul Barry_, Nov 05 2005