This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113753 #24 Jun 27 2025 22:11:15 %S A113753 2,4,6,9,14,18,25,32,44,63,86,126,185,276,424,663,1046,1658,2651,4252, %T A113753 6838,11025,17794,28746,46465,75126,121496,196525,317920,514342, %U A113753 832167,1346400,2178446,3524717,5703036,9227616,14930509,24157980,39088336 %N A113753 a(n) = Fibonacci(n-1) + prime(n). %H A113753 Puzzling Stack Exchange, <a href="https://puzzling.stackexchange.com/questions/26050/whats-the-next-number-in-this-sequence?rq=1">What's the next number in this sequence?</a> %e A113753 a(4) = 9 because the 4th prime is 7 and F(4) is 2. a(4) = 7 + 2 = 9. %p A113753 with(combinat, fibonacci): for n to 10^3 do print(fibonacci(n - 1) + ithprime(n)) end do; # _Reza K Ghazi_, May 14 2021 %t A113753 Do[Print[Fibonacci[n - 1] + Prime[n]], {n, 10^3}] (* _Reza K Ghazi_, May 14 2021*) %o A113753 (PARI) for(n=1, 1e3, print1(fibonacci(n-1)+prime(n)", ")) \\ _Reza K Ghazi_, May 14 2021 %o A113753 (SageMath) %o A113753 p = 0 %o A113753 for n in range(1, 10^3+1): %o A113753 print(fibonacci(n-1) + next_prime(p)) %o A113753 p = next_prime(p) # _Reza K Ghazi_, May 14 2021 %Y A113753 Cf. A000040, A000045, A004397. %K A113753 easy,nonn %O A113753 1,1 %A A113753 Mark Dowdey (mdowdey(AT)comcast.net), Jan 18 2006 %E A113753 Name corrected by _Reza K Ghazi_, May 15 2021