cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113761 Numbers k such that the number of divisors of k equals both the sum and the product of digits of k in base 10.

This page as a plain text file.
%I A113761 #11 Jul 22 2021 07:51:54
%S A113761 1,2,22,2114,11222,21122,22211,112116,121116,1111143,1413111,3411111,
%T A113761 11111128,11111821,11112118,11121231,11811112,13111212,18111112,
%U A113761 21111118,21111181,21121113,23111121,111112119,111119211,192111111
%N A113761 Numbers k such that the number of divisors of k equals both the sum and the product of digits of k in base 10.
%C A113761 Intersection of A074312 and A057531.
%H A113761 Chai Wah Wu, <a href="/A113761/b113761.txt">Table of n, a(n) for n = 1..10000</a>
%e A113761 2114 is a term since 2+1+1+4 = 2*1*1*4 = 8 and 2114 has 8 divisors, {1, 2, 7, 14, 151, 302, 1057, 2114}.
%t A113761 L={};Do[d=IntegerDigits@n; p=Times@@d; If[p==Plus@@d && p==DivisorSigma[0, n], AppendTo[L, n];Print[n]], {n, 1000000}];L
%t A113761 lst = {}; fQ[n_] := (id = IntegerDigits@n; Plus @@ id == Times @@ id == DivisorSigma[0, n]); Do[ If[ fQ@n, AppendTo[lst, n]], {n, 2*10^8}]; lst
%Y A113761 Cf. A034710, A057531, A074312.
%K A113761 base,nonn
%O A113761 1,2
%A A113761 _Giovanni Resta_, Jan 18 2006
%E A113761 a(13)-a(26) from _Robert G. Wilson v_, Jan 19 2006