cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113762 Numbers n with nonzero digits in their decimal representation such that when all numbers formed by inserting the exponentiation symbol between any two digits are added up, the sum is prime.

This page as a plain text file.
%I A113762 #13 Jun 27 2022 11:11:57
%S A113762 21,31,51,71,121,142,161,162,164,181,211,237,326,343,412,416,456,491,
%T A113762 494,612,616,726,817,929,1226,1228,1427,1513,1622,1776,1824,1828,1911,
%U A113762 1915,1975,2127,2188,3716,5265,6276,6321,6491,6852,7739,14423,14487,15297,16159
%N A113762 Numbers n with nonzero digits in their decimal representation such that when all numbers formed by inserting the exponentiation symbol between any two digits are added up, the sum is prime.
%H A113762 Michael S. Branicky, <a href="/A113762/b113762.txt">Table of n, a(n) for n = 1..55</a>
%e A113762 a(6) = 142 because 1^42+14^2 = 197, which is prime.
%t A113762 lst = {}; Do[ If[ Min@ IntegerDigits@n > 0, a=0; p=10; While[(w = Floor[n/p]) > 0, a += w^ Mod[n, p]; p*=10]; If[PrimeQ[a], Print[{n, a}]; AppendTo[lst, n]]], {n, 11, 9999}]; lst
%o A113762 (Python)
%o A113762 from sympy import isprime
%o A113762 from itertools import count, islice, product
%o A113762 def agen():
%o A113762     for d in count(2):
%o A113762         for p in product("123456789", repeat=d):
%o A113762             s = "".join(p)
%o A113762             if isprime(sum(int(s[:i])**int(s[i:]) for i in range(1, d))):
%o A113762                 yield int(s)
%o A113762 print(list(islice(agen(), 44))) # _Michael S. Branicky_, Jun 27 2022
%Y A113762 Cf. A117388.
%K A113762 base,nonn
%O A113762 1,1
%A A113762 _Ray G. Opao_, Jan 18 2006
%E A113762 More terms from _Giovanni Resta_, Jan 19 2006
%E A113762 More terms from _Robert G. Wilson v_, Apr 27 2006
%E A113762 a(47) and beyond from _Michael S. Branicky_, Jun 27 2022