A113781 Numbers k such that the representation of phi(k) is a cyclic permutation of that of k, in base 10.
1, 21, 63, 502, 4435, 5229, 5637, 6822, 8022, 35683, 98802, 176481, 210526, 421052, 442881, 480249, 529443, 544435, 640170, 842104, 920262, 976482, 7390422, 21251221, 28934019, 36174255, 36563587, 51804709, 59963997, 60550457
Offset: 1
Examples
phi(442881) = 288144.
Programs
-
Mathematica
lst = {}; Do[s = ToString@n; d = ToString@EulerPhi@n; If[StringLength@d == StringLength@n && {}!= StringPosition[s<>s, d], AppendTo[lst, n]], {n, 10^6}]; lst lst = {}; Do[s = ToString(AT)n; d = ToString(AT)EulerPhi(AT)n; If[StringLength(AT)d == StringLength(AT)n && {}!= StringPosition[s<>s, d], AppendTo[lst, n]], {n, 10^6}]; lst (* M. F. Hasler, Nov 28 2007 *)
Extensions
a(24)-a(30) from Donovan Johnson, Aug 27 2010
Comments