A113787 Number of iterations of signature function required to get to [1] from partitions in Abramowitz and Stegun order.
0, 1, 2, 1, 3, 2, 1, 3, 2, 4, 2, 1, 3, 3, 4, 4, 4, 2, 1, 3, 3, 2, 4, 3, 2, 4, 3, 4, 2, 1, 3, 3, 3, 4, 3, 4, 4, 4, 5, 4, 4, 4, 4, 2, 1, 3, 3, 3, 2, 4, 3, 3, 4, 4, 4, 5, 3, 5, 2, 4, 5, 4, 4, 4, 4, 2, 1, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 2, 4, 5, 5, 5, 5, 4, 4, 5, 4, 5, 4, 4, 5, 3, 4, 4, 4, 2
Offset: 1
Examples
Partition 5 in A&S order is [1,2]. Applying the signature function to this repeatedly gives [1,2] -> [1^2] -> [2] -> [1], so a(5)=3.
Links
- Robert Price, Table of n, a(n) for n = 1..9295 (first 25 rows).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Mathematica
sig[x_] := Length@NestWhileList[Last@Transpose@Tally@# &, x, # != {1} &, 1] - 1; Table[sig /@ Sort[Reverse /@ IntegerPartitions[n]], {n, 9}] // Flatten (* Robert Price, Jun 12 2020 *)
Comments