A113796 Numbers k such that k = T(x) + T(y) where T(m) is the m-th triangular number and k is concatenate(x, y) in base 10.
190, 191, 19900, 19901, 90415, 585910, 1201545, 1414910, 1501726, 1909415, 1999000, 1999001, 2442196, 7003676, 7693846, 14745226, 28296970, 30307171, 42009156, 47748526, 61549231, 63249300, 78049756, 82749850, 84559880, 115449880, 117259850, 121959756
Offset: 1
Examples
90415 = T(90) + T(415).
Links
- David A. Corneth, Table of n, a(n) for n = 1..56 (first 41 terms from Michael S. Branicky)
Programs
-
Mathematica
lst = {}; t[n_] := n(n + 1)/2; Do[p=10; While[n > p, If[t[Mod[n, p]] + t[Floor[n/p]] == n, AppendTo[lst, n]]; p*= 10], {n, 10^6}]; lst
-
Python
def T(n): return n*(n+1)//2 def ok(n): if n < 10: return False s = str(n) splits = ((int(s[:i]), int(s[i:])) for i in range(1, len(s))) return any(n == T(x) + T(y) for x, y in splits) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jan 22 2022
Extensions
a(26)-a(28) from Michael S. Branicky, Jan 22 2022
Comments