cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113796 Numbers k such that k = T(x) + T(y) where T(m) is the m-th triangular number and k is concatenate(x, y) in base 10.

Original entry on oeis.org

190, 191, 19900, 19901, 90415, 585910, 1201545, 1414910, 1501726, 1909415, 1999000, 1999001, 2442196, 7003676, 7693846, 14745226, 28296970, 30307171, 42009156, 47748526, 61549231, 63249300, 78049756, 82749850, 84559880, 115449880, 117259850, 121959756
Offset: 1

Views

Author

Giovanni Resta, Jan 21 2006

Keywords

Comments

Contains (2*10^i - 1)*10^i and (2*10^i - 1)*10^i + 1 for all i >= 1. - Michael S. Branicky, Jan 22 2022

Examples

			90415 = T(90) + T(415).
		

Crossrefs

Cf. A000217.
Subsequence of A020756.

Programs

  • Mathematica
    lst = {}; t[n_] := n(n + 1)/2; Do[p=10; While[n > p, If[t[Mod[n, p]] + t[Floor[n/p]] == n, AppendTo[lst, n]]; p*= 10], {n, 10^6}]; lst
  • Python
    def T(n): return n*(n+1)//2
    def ok(n):
        if n < 10: return False
        s = str(n)
        splits = ((int(s[:i]), int(s[i:])) for i in range(1, len(s)))
        return any(n == T(x) + T(y) for x, y in splits)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jan 22 2022

Extensions

a(26)-a(28) from Michael S. Branicky, Jan 22 2022