A113831
Last term of a 2 X n generalized arithmetic progression (GAP) of primes with smallest last term.
Original entry on oeis.org
13, 43, 59, 227, 353, 1439, 4969, 5179
Offset: 2
Here is the beginning of Granville's table:
n GAP Last term
2 3+8i+2j 13
3 7+24i+6j 43
4 5+36i+6j 59
5 11+96i+30j 227
6 11+42i+60j 353
7 47+132i+210j 1439
A113830
Leading term of a 2 X n generalized arithmetic progression (GAP) of primes with smallest last term.
Original entry on oeis.org
3, 7, 5, 11, 11, 47, 199, 199
Offset: 2
Here is the beginning of Granville's table:
n GAP Last term
2 3+8i+2j 13
3 7+24i+6j 43
4 5+36i+6j 59
5 11+96i+30j 227
6 11+42i+60j 353
7 47+132i+210j 1439
A249861
a(n) are values of k that yield "record-breaking" integer sequence lengths for the recursion: b(i) = 3*(b(i-1) + b(i-2))/2, with b(0) = 1 and b(1) = k.
Original entry on oeis.org
1, 5, 37, 101, 229, 485, 2533, 6629, 23013, 88549, 219621, 481765, 1006053, 3103205, 7297509, 24074725, 158292453, 1232034277, 3379517925, 7674485221, 282552392165, 1382064019941, 5780110531045, 14576203553253, 84944947730917, 647894901152229
Offset: 1
Subtracting 1 from Nmax gives the exponents of 2 needed to generate a(n) using the formula above, as:
a(1) = 1 (by definition)
a(2) = 1 + 2^(3-1) = 5
a(3) = 5 + 2^(6-1) = 37
a(4) = 37 + 2^(7-1) = 101
... etc.
Showing 1-3 of 3 results.
Comments