cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333382 Number of adjacent unequal parts in the n-th composition in standard-order.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For n > 0, a(n) is one fewer than the number of maximal runs of the n-th composition in standard-order.

Examples

			The 46th composition in standard order is (2,1,1,2), with maximal runs ((2),(1,1),(2)), so a(46) = 3 - 1 = 2.
		

Crossrefs

Indices of first appearances (not counting 0) are A113835.
Partitions whose 0-appended first differences are a run are A007862.
Partitions whose first differences are a run are A049988.
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Anti-runs are ranked by A333489.
- Anti-runs are counted by A333381.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],UnsameQ@@#&]],{n,0,100}]

Formula

For n > 0, a(n) = A124767(n) - 1.

A351015 Smallest k such that the k-th composition in standard order has n distinct runs.

Original entry on oeis.org

0, 1, 5, 27, 155, 1655, 18039, 281975
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
It would be very interesting to have a formula or general construction for a(n). - Gus Wiseman, Feb 12 2022

Examples

			The terms together with their binary expansions and corresponding compositions begin:
       0:                    0  ()
       1:                    1  (1)
       5:                  101  (2,1)
      27:                11011  (1,2,1,1)
     155:             10011011  (3,1,2,1,1)
    1655:          11001110111  (1,3,1,1,2,1,1,1)
   18039:      100011001110111  (4,1,3,1,1,2,1,1,1)
  281975:  1000100110101110111  (4,3,1,2,2,1,1,2,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A006939.
Counting not necessarily distinct runs gives A113835 (up to zero).
Using binary expansions instead of standard compositions gives A350952.
These are the positions of first appearances in A351014.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    s=Table[Length[Union[Split[stc[n]]]],{n,0,1000}];
    Table[Position[s,k][[1,1]]-1,{k,Union[s]}]

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A337565 Irregular triangle read by rows where row k is the sequence of maximal anti-run lengths in the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 3, 4, 2, 2, 2, 1, 1, 1, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The first column below lists various selected n; the second column gives the corresponding composition; the third column gives the corresponding row of the triangle, i.e., the anti-run lengths.
    1:           (1) -> (1)
    3:         (1,1) -> (1,1)
    5:         (2,1) -> (2)
    7:       (1,1,1) -> (1,1,1)
   11:       (2,1,1) -> (2,1)
   13:       (1,2,1) -> (3)
   14:       (1,1,2) -> (1,2)
   15:     (1,1,1,1) -> (1,1,1,1)
   23:     (2,1,1,1) -> (2,1,1)
   27:     (1,2,1,1) -> (3,1)
   29:     (1,1,2,1) -> (1,3)
   30:     (1,1,1,2) -> (1,1,2)
   31:   (1,1,1,1,1) -> (1,1,1,1,1)
   43:     (2,2,1,1) -> (1,2,1)
   45:     (2,1,2,1) -> (4)
   46:     (2,1,1,2) -> (2,2)
   47:   (2,1,1,1,1) -> (2,1,1,1)
   55:   (1,2,1,1,1) -> (3,1,1)
   59:   (1,1,2,1,1) -> (1,3,1)
   61:   (1,1,1,2,1) -> (1,1,3)
   62:   (1,1,1,1,2) -> (1,1,1,2)
   63: (1,1,1,1,1,1) -> (1,1,1,1,1,1)
For example, the 119th composition is (1,1,2,1,1,1), with maximal anti-runs ((1),(1,2,1),(1),(1)), so row 119 is (1,3,1,1).
		

Crossrefs

A000120 gives row sums.
A333381 gives row lengths.
A333769 is the version for runs.
A003242 counts anti-run compositions.
A011782 counts compositions.
A106351 counts anti-run compositions by length.
A329744 is a triangle counting compositions by runs-resistance.
A333755 counts compositions by number of runs.
All of the following pertain to compositions in standard order (A066099):
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Patterns are A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Anti-run compositions are A333489.
- Runs-resistance is A333628.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n],UnsameQ],{n,0,50}]
Showing 1-5 of 5 results.