cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113849 Numbers whose prime factors are raised to the fourth power.

This page as a plain text file.
%I A113849 #41 Aug 19 2024 13:16:44
%S A113849 16,81,625,1296,2401,10000,14641,28561,38416,50625,83521,130321,
%T A113849 194481,234256,279841,456976,707281,810000,923521,1185921,1336336,
%U A113849 1500625,1874161,2085136,2313441,2825761,3111696,3418801,4477456,4879681,6765201,7890481
%N A113849 Numbers whose prime factors are raised to the fourth power.
%C A113849 This is essentially A005117 (the squarefree numbers) raised to the fourth power. - _T. D. Noe_, Mar 13 2013
%C A113849 All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (term of this sequence), at most one 8th power of a squarefree number, and so on. - _Peter Munn_, Mar 12 2020
%H A113849 T. D. Noe, <a href="/A113849/b113849.txt">Table of n, a(n) for n = 1..10000</a>
%F A113849 From _Peter Munn_, Oct 31 2019: (Start)
%F A113849 a(n) = A005117(n+1)^4.
%F A113849 {a(n)} = {A225546(A000351(n)) : n >= 0} \ {1}, where {a(n)} denotes the set of integers in the sequence.
%F A113849 (End)
%F A113849 Sum_{k>=1} 1/a(k) = zeta(4)/zeta(8) - 1 = 105/Pi^4 - 1. - _Amiram Eldar_, May 22 2020
%e A113849 1296 = 16*81 = 2^4*3^4 so the prime factors of 1296, 2 and 3, are raised to the fourth power.
%t A113849 Select[ Range@50^4, Union[Last /@ FactorInteger@# ] == {4} &] (* _Robert G. Wilson v_, Jan 26 2006 *)
%t A113849 nn = 50; t = Select[Range[2, nn], Union[Transpose[FactorInteger[#]][[2]]] == {1} &]; t^4 (* _T. D. Noe_, Mar 13 2013 *)
%t A113849 Rest[Select[Range[100], SquareFreeQ]^4] (* _Vaclav Kotesovec_, May 22 2020 *)
%o A113849 (PARI) allpwrfact(n,p) = { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) } \\ All prime factors are raised to the power p
%o A113849 (Python)
%o A113849 from math import isqrt
%o A113849 from sympy import mobius
%o A113849 def A113849(n):
%o A113849     def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
%o A113849     kmin, kmax = 1,2
%o A113849     while f(kmax) >= kmax:
%o A113849         kmax <<= 1
%o A113849     while True:
%o A113849         kmid = kmax+kmin>>1
%o A113849         if f(kmid) < kmid:
%o A113849             kmax = kmid
%o A113849         else:
%o A113849             kmin = kmid
%o A113849         if kmax-kmin <= 1:
%o A113849             break
%o A113849     return kmax**4 # _Chai Wah Wu_, Aug 19 2024
%Y A113849 Proper subset of A000583.
%Y A113849 Other powers of squarefree numbers: A005117(1), A062503(2), A062838(3),  A113850(5), A113851(6), A113852(7), A072774(all).
%Y A113849 Cf. A000351, A225546.
%K A113849 easy,nonn
%O A113849 1,1
%A A113849 _Cino Hilliard_, Jan 25 2006
%E A113849 More terms from _Robert G. Wilson v_, Jan 26 2006