cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113850 Numbers whose prime factors are raised to the fifth power.

This page as a plain text file.
%I A113850 #31 Sep 14 2024 10:49:23
%S A113850 32,243,3125,7776,16807,100000,161051,371293,537824,759375,1419857,
%T A113850 2476099,4084101,5153632,6436343,11881376,20511149,24300000,28629151,
%U A113850 39135393,45435424,52521875,69343957,79235168,90224199,115856201
%N A113850 Numbers whose prime factors are raised to the fifth power.
%F A113850 Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - _Amiram Eldar_, May 22 2020
%F A113850 a(n) = A005117(n+1)^5. - _Chai Wah Wu_, Sep 13 2024
%e A113850 7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
%t A113850 Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* _Robert G. Wilson v_ *)
%t A113850 Rest[Select[Range[100], SquareFreeQ]^5] (* _Vaclav Kotesovec_, May 22 2020 *)
%o A113850 (PARI) allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
%o A113850 (Python)
%o A113850 from math import isqrt
%o A113850 from sympy import mobius
%o A113850 def A113850(n):
%o A113850     def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
%o A113850     m, k = n, f(n)
%o A113850     while m != k: m, k = k, f(k)
%o A113850     return m**5 # _Chai Wah Wu_, Sep 13 2024
%Y A113850 Proper subset of A000584.
%Y A113850 Nonunit terms of A329332 column 5 in ascending order.
%Y A113850 Cf. A005117, A157291.
%K A113850 easy,nonn
%O A113850 1,1
%A A113850 _Cino Hilliard_, Jan 25 2006
%E A113850 More terms from _Robert G. Wilson v_, Jan 26 2006
%E A113850 Offset corrected by _Chai Wah Wu_, Sep 13 2024