This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113850 #31 Sep 14 2024 10:49:23 %S A113850 32,243,3125,7776,16807,100000,161051,371293,537824,759375,1419857, %T A113850 2476099,4084101,5153632,6436343,11881376,20511149,24300000,28629151, %U A113850 39135393,45435424,52521875,69343957,79235168,90224199,115856201 %N A113850 Numbers whose prime factors are raised to the fifth power. %F A113850 Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - _Amiram Eldar_, May 22 2020 %F A113850 a(n) = A005117(n+1)^5. - _Chai Wah Wu_, Sep 13 2024 %e A113850 7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power. %t A113850 Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* _Robert G. Wilson v_ *) %t A113850 Rest[Select[Range[100], SquareFreeQ]^5] (* _Vaclav Kotesovec_, May 22 2020 *) %o A113850 (PARI) allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) } %o A113850 (Python) %o A113850 from math import isqrt %o A113850 from sympy import mobius %o A113850 def A113850(n): %o A113850 def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) %o A113850 m, k = n, f(n) %o A113850 while m != k: m, k = k, f(k) %o A113850 return m**5 # _Chai Wah Wu_, Sep 13 2024 %Y A113850 Proper subset of A000584. %Y A113850 Nonunit terms of A329332 column 5 in ascending order. %Y A113850 Cf. A005117, A157291. %K A113850 easy,nonn %O A113850 1,1 %A A113850 _Cino Hilliard_, Jan 25 2006 %E A113850 More terms from _Robert G. Wilson v_, Jan 26 2006 %E A113850 Offset corrected by _Chai Wah Wu_, Sep 13 2024