cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113852 Numbers whose prime factors are raised to the seventh power.

This page as a plain text file.
%I A113852 #25 Mar 12 2025 10:37:06
%S A113852 128,2187,78125,279936,823543,10000000,19487171,62748517,105413504,
%T A113852 170859375,410338673,893871739,1801088541,2494357888,3404825447,
%U A113852 8031810176,17249876309,21870000000,27512614111,42618442977,52523350144,64339296875,94931877133,114415582592
%N A113852 Numbers whose prime factors are raised to the seventh power.
%H A113852 Amiram Eldar, <a href="/A113852/b113852.txt">Table of n, a(n) for n = 1..10000</a>
%F A113852 From _Amiram Eldar_, Oct 13 2020: (Start)
%F A113852 a(n) = A005117(n+1)^7.
%F A113852 Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)
%t A113852 Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* _Robert G. Wilson v_, Jan 26 2006 *)
%t A113852 Select[Range[2, 34], SquareFreeQ]^7 (* _Amiram Eldar_, Oct 13 2020 *)
%o A113852 (PARI) allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
%o A113852 (Python)
%o A113852 from math import isqrt
%o A113852 from sympy import mobius
%o A113852 def A113852(n):
%o A113852     def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
%o A113852     m, k = n, f(n)
%o A113852     while m != k: m, k = k, f(k)
%o A113852     return m**7 # _Chai Wah Wu_, Feb 25 2025
%Y A113852 Proper subset of A001015.
%Y A113852 Nonunit terms of A329332 column 7 in ascending order.
%Y A113852 Cf. A005117, A013665, A013672.
%K A113852 easy,nonn
%O A113852 1,1
%A A113852 _Cino Hilliard_, Jan 25 2006
%E A113852 More terms from _Robert G. Wilson v_, Jan 26 2006