cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113855 Numbers whose prime factors are raised to the powers of each other.

This page as a plain text file.
%I A113855 #4 Oct 01 2013 17:58:22
%S A113855 72,800,6272,30375,247808,750141,1384448,37879808,189267968,235782657,
%T A113855 1313046875,1749600000,3502727631,4437573632,338751673344,
%U A113855 451508436992,634465620819,2063731785728,7863818359375,7971951402153,188153927303168
%N A113855 Numbers whose prime factors are raised to the powers of each other.
%C A113855 More precisely, n is a term iff n = prod(p_i^(sopf(n)-p_i)), where n has at least two distinct prime factors p_i and sopf(n) = A008472(n). - _Rick L. Shepherd_, Feb 02 2006
%e A113855 72 = 8*9 = 2^3*3^2. So primes 2 and 3 are raised to the power of each other.
%e A113855 800 = 2^5*5^2 = 2 to the power 5 times 5 to the power 2.
%o A113855 (PARI) allpwrfact(n) = { local(x, a, b); a = vector(50); a[1] = 2^3*3^2; a[2] = 2^5*5^2; a[3] = 2^7*7^2; a[4] = 2^11*11^2; a[5] = 2^13*13^2; a[6] = 2^17*17^2; a[7] = 2^19*19^2; a[8] = 2^23*23^2; a[9] = 2^29*29^2; a[10]= 2^31*31^2; a[11]= 2^37*37^2; a[12]= 2^41*41^2; a[13]= 3^5*5^3; a[14]= 3^7*7^3; a[15]= 3^11*11^3; a[16]= 3^13*13^3; a[17]= 3^17*17^3; a[18]= 3^19*19^3; a[19]= 3^23*23^3; a[20]= 3^29*29^3; a[21]= 3^31*31^3; a[22]= 3^37*37^3; a[23]= 2^3*2^5*3^2*3^5*5^2*5^3; a[24]= 2^3*2^7*3^2*3^7*7^2*7^3; a[25]= 2^5*2^7*5^2*5^7*7^2*7^5; a[26]= 2^5*2^11*5^2*5^11*11^2*11^5; a[27]= 3^5*3^7*5^3*5^7*7^3*7^5; a[28]=5^7*7^5; a[29]=5^11*11^5; b= vecsort(a); for(x=1, 42, if(b[x]<>0, print1(b[x]", "))) } (Shepherd)
%Y A113855 Cf. A082949 (numbers of the form p^q * q^p, p, q distinct primes), A008472 (sum of distinct prime factors of n).
%K A113855 nonn
%O A113855 1,1
%A A113855 _Cino Hilliard_, Jan 25 2006
%E A113855 Corrected by _Rick L. Shepherd_, Feb 02 2006