cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113899 Number parallelogram based on Pascal's triangle (and special mirror of central and multiply of diagonal).

This page as a plain text file.
%I A113899 #10 Jul 11 2015 10:34:13
%S A113899 252,126,126,56,140,56,21,105,105,21,6,60,120,60,6,1,25,100,100,25,1,
%T A113899 6,60,120,60,6,21,105,105,21,56,140,56,126,126,252
%N A113899 Number parallelogram based on Pascal's triangle (and special mirror of central and multiply of diagonal).
%C A113899 .............................C(0,0)*C(10,5)
%C A113899 ......................C(1,0)*C(9,5)...C(1,1)*C(9,4)
%C A113899 ...............C(2,0)*C(8,5)...C(2,1)*C(8,4)...C(2,2)*C(8,3)
%C A113899 ........C(3,0)*C(7,5)...C(3,1)*C(7,4)...C(3,2)*C(7,3)...C(3,3)*C(7,2)
%C A113899 ...C(4,0)*C(6,5)...C(4,1)*C(6,4)...C(4,2)*C(6,3)...C(4,3)*C(8,2)...C(4,4)*C(6,1)
%C A113899 C(5,0)*C(5,5)...C(5,1)*C(5,4)...C(5,2)*C(5,3)...C(5,3)*C(5,2)...C(5,4)*C(5,1)...C(5,5)*C(5,0)
%C A113899 ...C(6,1)*C(4,4)...C(4,1)*C(6,4)...C(4,2)*C(6,3)...C(4,3)*C(8,2)...C(6,5)*C(4,0)
%C A113899 ........C(7,2)*C(3,3)...C(7,3)*C(3,2)...C(7,4)*C(3,1)...C(7,5)*C(3,0)
%C A113899 ...............C(8,3)*C(2,2)...C(8,4)*C(2,1)...C(8,5)*C(2,0)
%C A113899 ......................C(9,4)*C(1,1)...C(9,5)*C(1,0)
%C A113899 .............................C(10,5)*C(0,0)
%C A113899 "m" matching: analog (permutations with exactly "m" fixed points.
%C A113899 if aaaaabbbbb (a 5 letters b 5 letters) permutations compared aaaaaaaaaa (a 10 times letters) or compared bbbbbbbbbb (b 10 times letters then 252 "5" matching. ("5" matching: analog (permutations with exactly 5 fixed points.)
%C A113899 If aaaaabbbbb (a 5 letters b 5 letters) permutations compared aaaaabbbbb (a 5 times letters b 5 times letters)then 1 "0" matching), 25 "2"matching 100 "4" matching, 100 "6" matching, 25 "8" matching and 1 "10" matching.(A008459 formatted as a triangular array: 6.rows)
%C A113899 If aaaaabbbbb (a 5 letters b 5 letters) permutations compared abbbbbbbbb (a 1 times letters b 9 times letters) or aaaaaaaaab (a 9 times letters b 1 times letters) then 126 "4" and 126 "6" matching.
%C A113899 etc...
%C A113899 matching equivalent "fixed-point"
%C A113899 example:
%C A113899 arrangement relevant!
%C A113899 compared
%C A113899 letters
%C A113899 times
%C A113899 matching:0.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
%C A113899 compared.
%C A113899 letters..
%C A113899 times....
%C A113899 .a..b
%C A113899 10..0.................................252..............................
%C A113899 .9..1...........................126.........126........................
%C A113899 .8..2......................56.........140..........56..................
%C A113899 .7..3................21.........105.........105..........21............
%C A113899 .6..4..........6...........60.........120..........60..........6.......
%C A113899 .5..5....1...........25.........100.........100..........25...........1
%C A113899 .4..6..........6...........60.........120..........60..........6.......
%C A113899 .3..7................21.........105.........105..........21............
%C A113899 .2..8......................56.........140..........56..................
%C A113899 .1..9...........................126.........126........................
%C A113899 0..10..................................252.............................
%C A113899 matching.0.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
%C A113899 The Maple code produces
%C A113899 252, 126, 56, 21, 6, 1
%C A113899 126, 140, 105, 60, 25, 6
%C A113899 56, 105, 120, 100, 60, 21
%C A113899 21, 60, 100, 120, 105, 56
%C A113899 6, 25, 60, 105, 140, 126
%C A113899 1, 6, 21, 56, 126, 252
%C A113899 which is the table rotated right by Pi/4.
%p A113899 for n from 0 to 5 do seq(binomial(i,n)*binomial(10-i,5-n), i=0+n..10-5+n ); # _Zerinvary Lajos_, Mar 31 2009
%Y A113899 Cf. A113162, A113163, A113164.
%K A113899 easy,fini,nonn,uned
%O A113899 0,1
%A A113899 _Zerinvary Lajos_, Jan 29 2006, May 28 2007