A113953 A Jacobsthal triangle.
1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 4, 6, 1, 0, 0, 0, 12, 8, 1, 0, 0, 0, 8, 24, 10, 1, 0, 0, 0, 0, 32, 40, 12, 1, 0, 0, 0, 0, 16, 80, 60, 14, 1, 0, 0, 0, 0, 0, 80, 160, 84, 16, 1, 0, 0, 0, 0, 0, 32, 240, 280, 112, 18, 1, 0, 0, 0, 0, 0, 0, 192, 560, 448, 144, 20, 1, 0, 0, 0, 0, 0, 0, 64, 672, 1120, 672, 180, 22, 1
Offset: 0
Examples
Rows begin 1; 0, 1; 0, 2, 1; 0, 0, 4, 1; 0, 0, 4, 6, 1; 0, 0, 0, 12, 8, 1; 0, 0, 0, 8, 24, 10, 1;
Links
- D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theor. Comp. Sci 242 (1-2) (2000) 109-124, Table 1, p=2.
Crossrefs
A signed version is A110509.
Formula
G.f.: 1/(1-xy(1+2x)).
Riordan array (1, x(1+2x)).
T(n,k) = 2^(n-k)*binomial(k, n-k).
T(n,k) = A026729(n,k)*2^(n-k). - Philippe Deléham, Nov 22 2006
T(n,k) = T(n-1,k-1) + 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 01 2013
Comments