A114025 Least prime such that the n-th partial concatenation is a multiple of the n-th prime.
2, 7, 5, 17, 71, 23, 2, 53, 151, 191, 181, 61, 47, 61, 163, 373, 23, 29, 179, 167, 353, 691, 37, 7, 79, 43, 7, 73, 683, 757, 1259, 433, 113, 1523, 643, 19, 73, 383, 1907, 89, 2423, 457, 223, 2713, 71, 3253, 191, 17, 1069, 353, 1481, 1433, 787, 1009, 1753, 557, 3001
Offset: 1
Examples
2 divides 2, 3 divides 27, 5 divides 275.
Programs
-
Mathematica
a[n_] := a[n] = Block[{q = Flatten[IntegerDigits /@ Table[a[i], {i, n - 1}]], p = Prime[n], k = 1}, While[Mod[FromDigits@Join[q, IntegerDigits@Prime@k], p] != 0, k++ ]; Prime[k]]; Array[a, 57] (* Robert G. Wilson v *)
Extensions
More terms from Robert G. Wilson v, Nov 19 2005
Definition corrected by David Wasserman, Mar 04 2008
Comments