cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114034 Let f(n) be the number of sequences of 1's and 2's which sum to n. Sequence contains the string of sequences.

This page as a plain text file.
%I A114034 #19 Jan 14 2024 16:10:22
%S A114034 1,2,11,12,21,111,22,112,121,211,1111,122,212,221,1112,1121,1211,2111,
%T A114034 11111,222,1122,1212,1221,2112,2121,2211,11112,11121,11211,12111,
%U A114034 21111,111111,1222,2122,2212,2221,11122,11212,11221,12112,12121,12211,21112,21121,21211,22111,111112,111121,111211,112111,121111,211111,1111111
%N A114034 Let f(n) be the number of sequences of 1's and 2's which sum to n. Sequence contains the string of sequences.
%C A114034 Number of sequences of ones and twos that sum to n are Fibonacci(n+1). The maximum number of terms in a sequence is n. (111111 n times). Following is the triangle of the frequency of sequences of each size:
%C A114034 1
%C A114034 1 1
%C A114034 0 2 1
%C A114034 0 1 3 1
%C A114034 0 0 3 4 1
%C A114034 0 0 1 6 5 1
%C A114034 ...
%C A114034 This is a vertical Pascal's triangle and the horizontal sum gives the Fibonacci numbers.
%C A114034 Each row of the irregular triangle provides a list of increasing positive integers of only 1s and 2s that sum up to n (see Example section). - _Stefano Spezia_, Jan 14 2024
%H A114034 N. Karimilla Bi, Amritanshu Prasad, and P. Giftson Santhosh, <a href="https://arxiv.org/abs/1702.06684">Residues modulo powers of two in the Young-Fibonacci lattice</a>, arXiv:1702.06684 [math.CO], 2017. See Figure 1.
%e A114034 The irregular triangle begins:
%e A114034   n
%e A114034   1:   1;                                          f(1) = 1.
%e A114034   2:   2,  11;                                     f(2) = 2.
%e A114034   3:  12,  21, 111;                                f(3) = 3.
%e A114034   4:  22, 112, 121,  211, 1111;                    f(4) = 5.
%e A114034   5: 122, 212, 221, 1112, 1121, 1211, 2111, 11111; f(5) = 8.
%e A114034 ...
%t A114034 row[n_] := Select[Range[(10^n-1)/9], SubsetQ[{1,2}, DeleteDuplicates[digits = IntegerDigits[#]]] && Total[digits]==n &]; Array[row,7]//Flatten (* _Stefano Spezia_, Jan 14 2024 *)
%Y A114034 Cf. A000045, A242614.
%K A114034 nonn,base,tabf
%O A114034 1,2
%A A114034 _Amarnath Murthy_, Nov 13 2005
%E A114034 More terms from Terryjames Morris (trm5002(AT)psu.edu), Mar 09 2007
%E A114034 Duplicate term removed by _Stefano Spezia_, Jan 14 2024