This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114034 #19 Jan 14 2024 16:10:22 %S A114034 1,2,11,12,21,111,22,112,121,211,1111,122,212,221,1112,1121,1211,2111, %T A114034 11111,222,1122,1212,1221,2112,2121,2211,11112,11121,11211,12111, %U A114034 21111,111111,1222,2122,2212,2221,11122,11212,11221,12112,12121,12211,21112,21121,21211,22111,111112,111121,111211,112111,121111,211111,1111111 %N A114034 Let f(n) be the number of sequences of 1's and 2's which sum to n. Sequence contains the string of sequences. %C A114034 Number of sequences of ones and twos that sum to n are Fibonacci(n+1). The maximum number of terms in a sequence is n. (111111 n times). Following is the triangle of the frequency of sequences of each size: %C A114034 1 %C A114034 1 1 %C A114034 0 2 1 %C A114034 0 1 3 1 %C A114034 0 0 3 4 1 %C A114034 0 0 1 6 5 1 %C A114034 ... %C A114034 This is a vertical Pascal's triangle and the horizontal sum gives the Fibonacci numbers. %C A114034 Each row of the irregular triangle provides a list of increasing positive integers of only 1s and 2s that sum up to n (see Example section). - _Stefano Spezia_, Jan 14 2024 %H A114034 N. Karimilla Bi, Amritanshu Prasad, and P. Giftson Santhosh, <a href="https://arxiv.org/abs/1702.06684">Residues modulo powers of two in the Young-Fibonacci lattice</a>, arXiv:1702.06684 [math.CO], 2017. See Figure 1. %e A114034 The irregular triangle begins: %e A114034 n %e A114034 1: 1; f(1) = 1. %e A114034 2: 2, 11; f(2) = 2. %e A114034 3: 12, 21, 111; f(3) = 3. %e A114034 4: 22, 112, 121, 211, 1111; f(4) = 5. %e A114034 5: 122, 212, 221, 1112, 1121, 1211, 2111, 11111; f(5) = 8. %e A114034 ... %t A114034 row[n_] := Select[Range[(10^n-1)/9], SubsetQ[{1,2}, DeleteDuplicates[digits = IntegerDigits[#]]] && Total[digits]==n &]; Array[row,7]//Flatten (* _Stefano Spezia_, Jan 14 2024 *) %Y A114034 Cf. A000045, A242614. %K A114034 nonn,base,tabf %O A114034 1,2 %A A114034 _Amarnath Murthy_, Nov 13 2005 %E A114034 More terms from Terryjames Morris (trm5002(AT)psu.edu), Mar 09 2007 %E A114034 Duplicate term removed by _Stefano Spezia_, Jan 14 2024