A114038 Analog of A113869 for three generators.
1, 0, -1, 0, -3, -6, -38, -186, -1181, -8094, -61865, -516702, -4688020, -45887352, -481954769, -5406249972, -64506680939, -815807306442, -10901200843386, -153475188129114, -2270769144678657, -35226976789341426, -571781884343282417, -9691701188493783546
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400
- John D. Dixon, Asymptotics of Generating the Symmetric and Alternating Groups, Electronic Journal of Combinatorics, Item R56 of Volume 12(1), 2005.
Programs
-
Mathematica
nmax=30; A113871 = Rest[CoefficientList[Series[1/Sum[(k!)^2 x^k,{k,0,nmax}],{x,0,nmax}],x]]; Table[SeriesCoefficient[1 + Sum[A113871[[j]]/Product[n-i+1,{i,1,j}]^2,{j,1,nmax}],{n,Infinity,k}],{k,0,nmax}] (* Vaclav Kotesovec, Jul 28 2015 *)
Formula
a(n) ~ -Pi * n^(n+1) / (2^(n+4) * exp(n) * (log(2))^(n+3/2)). - Vaclav Kotesovec, Jul 28 2015
Extensions
Missing a(3)=0 and more terms added by Vaclav Kotesovec, Jul 28 2015