This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114076 #40 Jun 04 2024 16:41:51 %S A114076 1,4,32,50,72,225,256,400,576,900,1944,2048,2166,2312,2646,3200,4107, %T A114076 4563,4608,5202,6075,6250,7200,7225,15125,15552,16384,16428,17328, %U A114076 18252,18496,21168,23762,24300,25600,28125,28900,35378,36864,41616,50000,52488,57600 %N A114076 Numbers k such that k * phi(k) is a cube. %C A114076 From _Robert Israel_, Sep 06 2020: (Start) %C A114076 If n > 1 is in the sequence, A071178(n) == 2 (mod 3). %C A114076 If p=2^(2^k)+1 is in A019434, includes 2^a*p^b where a == 2^k-1 (mod 3) and b == 2 (mod 3). %C A114076 If members m and n are coprime, then m*n is in the sequence. %C A114076 If n is in the sequence and prime p divides n, then p^3*n is in the sequence. (End) %C A114076 To look for terms it suffices to see if cubes have a divisors pair (k, m) such that phi(m) = k. - _David A. Corneth_, May 21 2024 %H A114076 David A. Corneth, <a href="/A114076/b114076.txt">Table of n, a(n) for n = 1..8565</a> (first 300 terms from Robert Israel, terms <= 5*10^11) %H A114076 David A. Corneth, <a href="/A114076/a114076.gp.txt">PARI program</a> %e A114076 phi(1944) * 1944 = 1259712 = 108^3. %p A114076 filter:= proc(n) local F; %p A114076 F:= ifactors(n*numtheory:-phi(n))[2]; %p A114076 type(map(t -> t[2]/3, F), list(integer)); %p A114076 end proc: %p A114076 select(filter, [$1..10^5]); # _Robert Israel_, Sep 06 2020 %t A114076 Select[Range[57600],IntegerQ[(# EulerPhi[#])^(1/3)]&] (* _Stefano Spezia_, May 29 2024 *) %o A114076 (PARI) isok(n) = ispower(n*eulerphi(n), 3); \\ _Michel Marcus_, Jan 22 2014 %o A114076 (PARI) upto(n)= res = List(); forfactored(i = 1, n, if(ispower(i[1] * eulerphi(i[2]), 3), listput(res, i[1]); ) ); res \\ _David A. Corneth_, Dec 08 2022 %o A114076 (PARI) \\ See Corneth link %o A114076 (Python) %o A114076 from sympy import integer_nthroot, totient as phi %o A114076 def ok(k): return integer_nthroot(k * phi(k), 3)[1] %o A114076 print([k for k in range(1, 60000) if ok(k)]) # _Michael S. Branicky_, Dec 08 2022 %Y A114076 Aside from the first term, a subsequence of A070003. A013731 is a subsequence. %Y A114076 Cf. A000010, A071178, A019434. %K A114076 nonn %O A114076 1,2 %A A114076 _Giovanni Resta_, Feb 13 2006 %E A114076 More terms from _Michel Marcus_, Jan 22 2014