cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114089 Total number of parts in the tails below the Durfee squares of all partitions of n.

This page as a plain text file.
%I A114089 #17 Sep 09 2024 09:36:24
%S A114089 0,1,3,6,11,19,31,50,76,116,169,247,349,494,682,941,1274,1724,2296,
%T A114089 3054,4014,5263,6833,8854,11373,14578,18556,23561,29736,37447,46903,
%U A114089 58619,72925,90518,111899,138044,169665,208111,254436,310456,377687,458625
%N A114089 Total number of parts in the tails below the Durfee squares of all partitions of n.
%D A114089 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
%D A114089 G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
%H A114089 Alois P. Heinz, <a href="/A114089/b114089.txt">Table of n, a(n) for n = 1..1000</a>
%F A114089 a(n) = Sum_{k=0..n-1} k*A114088(n,k).
%F A114089 G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-tq^j), j=1..k), k=1..infinity)}]_{t=1}.
%F A114089 a(n) = A006128(n) - A115995(n). - _Vladeta Jovovic_, Feb 18 2006
%e A114089 a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having a total of 6 parts.
%p A114089 g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..10): dgdt1:=simplify(subs(t=1,diff(g,t))): dgdt1ser:=series(dgdt1,z=0,55): seq(coeff(dgdt1ser,z,n),n=1..45);
%p A114089 # second Maple program:
%p A114089 b:= proc(n, i) option remember;
%p A114089       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
%p A114089     end:
%p A114089 a:= n-> add(j*b(n-j, j), j=1..n) -add(add(b(k, d)*b(n-d^2-k, d),
%p A114089                          k=0..n-d^2)*d, d=1..floor(sqrt(n))):
%p A114089 seq(a(n), n=1..70);  # _Alois P. Heinz_, Apr 09 2012
%t A114089 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[j*b[n-j, j], {j, 1, n}] - Sum[Sum[b[k, d]*b[n-d^2-k, d], {k, 0, n-d^2}]*d, {d, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 70}] (* _Jean-François Alcover_, Mar 31 2015, after _Alois P. Heinz_ *)
%Y A114089 Cf. A115994, A115995, A114087, A116365, A114088.
%K A114089 nonn
%O A114089 1,3
%A A114089 _Emeric Deutsch_, Feb 12 2006