A114096 Number of partitions of n into parts that are distinct mod 8.
1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, 20, 23, 26, 31, 37, 42, 47, 54, 65, 72, 80, 90, 108, 115, 129, 145, 168, 184, 200, 220, 259, 270, 301, 336, 375, 411, 436, 477, 546, 568, 631, 700, 755, 832, 862, 945, 1050
Offset: 1
Keywords
Examples
a(7)=5 because there are 5 such partition of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..800
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #,8]& /@ Partitions[n],(Length@# != Length@Union@#)&]; lst = Array[np,50] Table[Count[IntegerPartitions[n],?(Max[Tally[Mod[#,8]][[All,2]]]==1&)],{n,50}] (* _Harvey P. Dale, Apr 17 2021 *)