This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114113 #41 Sep 08 2022 08:45:23 %S A114113 1,3,7,10,16,21,29,36,46,55,67,78,92,105,121,136,154,171,191,210,232, %T A114113 253,277,300,326,351,379,406,436,465,497,528,562,595,631,666,704,741, %U A114113 781,820,862,903,947,990,1036,1081,1129,1176,1226,1275,1327,1378,1432 %N A114113 a(n) = sum{k=1 to n} (A114112(k)). (For n>=2, a(n) = sum{k=1 to n} (A014681(k)) =sum{k=1 to n} (A103889(k)).). %C A114113 a(n) is not divisible by (A114112(n+1)). %C A114113 Sequence is A130883 union A014105 - {0,2}. - _Anthony Hernandez_, Sep 08 2016 %H A114113 Vincenzo Librandi, <a href="/A114113/b114113.txt">Table of n, a(n) for n = 1..10000</a> %H A114113 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A114113 a(1)=1. a(2n) = n*(2n+1). a(2n+1) = 2n^2 +3n +2. %F A114113 From _R. J. Mathar_, Nov 04 2008: (Start) %F A114113 a(n) = A026035(n+1) - A026035(n), n>1. %F A114113 G.f.: x(1+x+x^2-2x^3+x^4)/((1+x)(1-x)^3). %F A114113 a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>5. (End) %F A114113 This is (essentially) 1 + A084265, - _N. J. A. Sloane_, Mar 12 2018 %t A114113 Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 7, 10, 16}, 52]] (* _Jean-François Alcover_, Sep 22 2017 *) %t A114113 CoefficientList[Series[(1 + x + x^2 -2 x^3 + x^4)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* _Vincenzo Librandi_, Mar 13 2018 *) %o A114113 (Magma) I:=[1,3,7,10,16]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // _Vincenzo Librandi_, Mar 13 2018 %o A114113 (Python) %o A114113 def A114113(n): return 1 if n == 1 else (m:=n//2)*(n+1) + (n+1-m)*(n-2*m) # _Chai Wah Wu_, May 24 2022 %Y A114113 Cf. A014105, A014681, A026035, A084265, A103889, A114112. %K A114113 easy,nonn %O A114113 1,2 %A A114113 _Leroy Quet_, Nov 13 2005 %E A114113 More terms from _R. J. Mathar_, Aug 31 2007