A114117 Inverse of 1's counting matrix A114116.
1, 0, 1, -2, 1, 1, -1, -1, 1, 1, 0, -2, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, 0, -2, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 0, -2, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; -2, 1, 1; -1,-1, 1, 1; 0,-2, 0, 1, 1; 0,-1,-1, 0, 1, 1; 0, 0,-2, 0, 0, 1, 1; 0, 0,-1,-1, 0, 0, 1, 1;
Formula
T(n, k) = Sum_{j=0..n} Sum_{i=0..n} C(floor((n+i)/2), j)*C(j, floor((n+i)/2))*(2*C(0, j-k)-C(1, j-k)).
Comments