cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114117 Inverse of 1's counting matrix A114116.

Original entry on oeis.org

1, 0, 1, -2, 1, 1, -1, -1, 1, 1, 0, -2, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, 0, -2, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 0, -2, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Nov 13 2005

Keywords

Comments

Row sums are (1,1,0,0,0,.....) with g.f. 1+x. Diagonal sums have g.f. (1-x^2-x^3)/(1-x^3). Product of A114115 and the first difference matrix (1-x,x).

Examples

			Triangle begins
  1;
  0, 1;
 -2, 1, 1;
 -1,-1, 1, 1;
  0,-2, 0, 1, 1;
  0,-1,-1, 0, 1, 1;
  0, 0,-2, 0, 0, 1, 1;
  0, 0,-1,-1, 0, 0, 1, 1;
		

Crossrefs

Formula

T(n, k) = Sum_{j=0..n} Sum_{i=0..n} C(floor((n+i)/2), j)*C(j, floor((n+i)/2))*(2*C(0, j-k)-C(1, j-k)).