This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114123 #23 Sep 08 2022 08:45:23 %S A114123 1,1,1,1,5,1,1,13,9,1,1,25,41,13,1,1,41,129,85,17,1,1,61,321,377,145, %T A114123 21,1,1,85,681,1289,833,221,25,1,1,113,1289,3653,3649,1561,313,29,1,1, %U A114123 145,2241,8989,13073,8361,2625,421,33,1,1,181,3649,19825,40081,36365,16641,4089,545,37,1 %N A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2). %C A114123 Row sums are A099463(n+1). Diagonal sums are A116404. %C A114123 Triangle formed of even-numbered columns of the Delannoy triangle A008288. - _Philippe Deléham_, Mar 11 2013 %H A114123 G. C. Greubel, <a href="/A114123/b114123.txt">Rows n = 0..50 of the triangle, flattened</a> %F A114123 T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j). %F A114123 T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j. %F A114123 Sum_{k=0..n} T(n, k) = A099463(n+1). %F A114123 Sum_{k=0..floor(n/2)} T(n, k) = A116404(n). %F A114123 T(n, k) = hypergeom([-2*k, k-n], [1], 2). - _Peter Luschny_, Sep 16 2014 %F A114123 T(n, n-k) = A184883(n, k). - _G. C. Greubel_, Nov 20 2021 %e A114123 Triangle begins %e A114123 1; %e A114123 1, 1; %e A114123 1, 5, 1; %e A114123 1, 13, 9, 1; %e A114123 1, 25, 41, 13, 1; %e A114123 1, 41, 129, 85, 17, 1; %e A114123 1, 61, 321, 377, 145, 21, 1; %p A114123 T := (n,k) -> hypergeom([-2*k, k-n], [1], 2); %p A114123 seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # _Peter Luschny_, Sep 16 2014 %t A114123 T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2]; %t A114123 Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* _Jean-François Alcover_, Jun 13 2019 *) %o A114123 (Magma) %o A114123 T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >; %o A114123 [T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2021 %o A114123 (Sage) %o A114123 def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) ) %o A114123 flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Nov 20 2021 %Y A114123 Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883. %K A114123 easy,nonn,tabl %O A114123 0,5 %A A114123 _Paul Barry_, Feb 07 2006, Oct 22 2006