This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114154 #5 Jun 13 2017 23:39:46 %S A114154 1,5,1,45,8,1,635,120,11,1,12815,2556,231,14,1,343815,71548,6556,378, %T A114154 17,1,11651427,2508528,233706,13391,561,20,1,480718723,106427700, %U A114154 10069521,579047,23817,780,23,1 %N A114154 Triangle, read by rows, given by the product R^3*Q^-2 using triangular matrices Q=A113381, R=A113389. %C A114154 Complementary to A114155, which gives Q^-2*P^3. %e A114154 Triangle R^3*Q^-2 begins: %e A114154 1; %e A114154 5,1; %e A114154 45,8,1; %e A114154 635,120,11,1; %e A114154 12815,2556,231,14,1; %e A114154 343815,71548,6556,378,17,1; ... %e A114154 Compare to Q (A113381): %e A114154 1; %e A114154 2,1; %e A114154 6,5,1; %e A114154 37,45,8,1; %e A114154 429,635,120,11,1; %e A114154 7629,12815,2556,231,14,1; ... %e A114154 Thus R^3*Q^-2 equals Q shift left one column. %o A114154 (PARI) T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*Q^-2)[n+1,k+1] %Y A114154 Cf. A113394 (R^3), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1). %K A114154 nonn,tabl %O A114154 0,2 %A A114154 _Paul D. Hanna_, Nov 15 2005