This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114160 #26 Jan 21 2025 06:31:06 %S A114160 1,2,7,38,281,2634,29919,399342,6125265,106156530,2051433495, %T A114160 43734832470,1019650457385,25807495577850,704708234182575, %U A114160 20649996837971550,646340185330747425,21521124899877175650,759572031366463998375,28325808256035867711750,1112907316518036732317625 %N A114160 E.g.f. is A(x) = (1-log(B(x)))/B(x), where B(x) = sqrt(1-2*x). %C A114160 From _John M. Campbell_, May 20 2011: (Start) %C A114160 a(n) is the determinant of the n X n matrix of the form: %C A114160 |2 1 1 1 ... 1 | %C A114160 |1 4 1 1 ... 1 | %C A114160 |1 1 6 1 ... 1 | %C A114160 |1 1 1 8 ... 1 | %C A114160 |... ... 1 | %C A114160 |1 1 1 1 2n-2 1 | %C A114160 |1 1 1 1 1 2n | %C A114160 See examples. (End) %D A114160 C. Dement, Floretion Integer Sequences (work in progress) %H A114160 G. C. Greubel, <a href="/A114160/b114160.txt">Table of n, a(n) for n = 0..400</a> %F A114160 a(n) = A001147(n) + A004041(n-1) = 2^n*Gamma(n+1/2)/Pi^(1/2)*(1/2*Psi(n+1/2)+1/2*gamma+log(2)+1). - _Vladeta Jovovic_ %e A114160 From _John M. Campbell_, May 20 2011: (Start) %e A114160 Det[{ %e A114160 {2,1,1,1,1,1}, %e A114160 {1,4,1,1,1,1}, %e A114160 {1,1,6,1,1,1}, %e A114160 {1,1,1,8,1,1}, %e A114160 {1,1,1,1,10,1}, %e A114160 {1,1,1,1,1,12}}] = 29919 = a(6), and %e A114160 Det[{ %e A114160 {2,1,1,1,1,1,1}, %e A114160 {1,4,1,1,1,1,1}, %e A114160 {1,1,6,1,1,1,1}, %e A114160 {1,1,1,8,1,1,1}, %e A114160 {1,1,1,1,10,1,1}, %e A114160 {1,1,1,1,1,12,1}, %e A114160 {1,1,1,1,1,1,14}}] = 399342 = a(7). %e A114160 (End) %t A114160 Range[0, 18]! CoefficientList[ Series[(1 - Log[Sqrt[1 - 2x]])/Sqrt[(1 - 2x)], {x, 0, 18}], x] (* or *) %t A114160 f[n_] := FullSimplify[ 2^(n-1)*Gamma[n + 1/2]/Sqrt[Pi]*(PolyGamma[n + 1/2] + EulerGamma + Log[4] + 2)]; Table[f[n], {n, 0, 18}] (* _Robert G. Wilson v_ *) %t A114160 twox[x_, y_] := If[x == y, 2*x, 1]; a[n_] := Det[Array[twox[#1, #2] &, {n, n}]]; Join[{1}, Table[a[n], {n, 1, 10}]] (* _John M. Campbell_, May 20 2011 *) %o A114160 (PARI) my(x='x + O('x^50)); Vec(serlaplace((1 - log(sqrt(1 - 2*x)))/sqrt(1 - 2*x))) \\ _G. C. Greubel_, Feb 08 2017 %Y A114160 Cf. A114161. %K A114160 nonn %O A114160 0,2 %A A114160 _Creighton Dement_, Nov 14 2005 %E A114160 E.g.f. given by _Vladeta Jovovic_ %E A114160 More terms from _Robert G. Wilson v_, Nov 15 2005