A114163 Triangle read by rows, based on a simple Jacobsthal number recursion rule.
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 18, 10, 1, 1, 5, 58, 68, 21, 1, 1, 6, 179, 398, 299, 42, 1, 1, 7, 543, 2169, 3687, 1181, 85, 1, 1, 8, 1636, 11388, 42726, 28488, 4836, 170, 1, 1, 9, 4916, 58576, 481374, 640974, 236436, 19286, 341, 1, 1, 10, 14757, 297796, 5353690
Offset: 0
Examples
Triangle begins 1....1....3....5...11...21...43....J(k+1) 1 1....1 1....2....1 1....3....5....1 1....4...18...10....1 1....5...58...68...21....1 1....6..179..398..299...42....1 For example, T(6,3)=398=58+5*68=T(5,2)+J(4)*T(5,3).
Crossrefs
Cf. A111669.
Formula
Number triangle T(n, k)=T(n-1, k-1)+J(k+1)*T(n-1, k) where J(n)=A001045(n); Column k has g.f. x^k/Product(1-J(i+1)x, i, 0, k).
Comments