This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114197 #18 Sep 20 2019 07:33:55 %S A114197 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,21,31,21,6,1,1,7,31, %T A114197 61,61,31,7,1,1,8,43,106,142,106,43,8,1,1,9,57,169,286,286,169,57,9,1, %U A114197 1,10,73,253,520,659,520,253,73,10,1 %N A114197 A Pascal-Fibonacci triangle. %C A114197 T(2n,n) is A114198. Row sums are A114199. Row sums of inverse are 0^n. %H A114197 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4. %F A114197 As a number triangle, T(n,k) = Sum_{j=0..n-k} C(n-k, j)C(k, j)F(j); %F A114197 As a number triangle, T(n,k) = Sum_{j=0..n} C(n-k, n-j)C(k, j-k)F(j-k); %F A114197 As a number triangle, T(n,k) = Sum_{j=0..n} C(k, j)C(n-k, n-j)F(k-j) if k <= n, 0 otherwise. %F A114197 As a square array, T(n,k) = Sum_{j=0..n} C(n, j)C(k, j)F(j); %F A114197 As a square array, T(n,k) = Sum_{j=0..n+k} C(n, n+k-j)C(k, j-k)F(j-k); %F A114197 Column k has g.f.: (Sum_{j=0..k} C(k, j)F(j+1)(x/(1-x))^j)*x^k/(1-x); %F A114197 G.f.: -((x^2-x)*y-x+1)/((x^4+x^3-x^2)*y^2+(x^3-3*x^2+2*x)*y-x^2+2*x-1). - _Vladimir Kruchinin_, Jan 15 2018 %e A114197 Triangle begins %e A114197 1; %e A114197 1, 1; %e A114197 1, 2, 1; %e A114197 1, 3, 3, 1; %e A114197 1, 4, 7, 4, 1; %e A114197 1, 5, 13, 13, 5, 1; %e A114197 1, 6, 21, 31, 21, 6, 1; %e A114197 1, 7, 31, 61, 61, 31, 7, 1; %e A114197 1, 8, 43, 106, 142, 106, 43, 8, 1; %Y A114197 Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074. %K A114197 easy,nonn,tabl %O A114197 0,5 %A A114197 _Paul Barry_, Nov 16 2005