This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114212 #15 Jun 06 2021 09:05:14 %S A114212 1,2,3,4,4,4,6,8,6,4,6,8,8,8,12,16,10,4,6,8,8,8,12,16,12,8,12,16,16, %T A114212 16,24,32,18,4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,20,8,12,16,16,16, %U A114212 24,32,24,16,24,32,32,32,48,64,34,4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,20,8 %N A114212 Generalized Gould sequence. %C A114212 Row sums of A114213. %H A114212 Jeffrey Shallit and Lukas Spiegelhofer, <a href="https://arxiv.org/abs/1710.06203">Continuants, run lengths, and Barry's modified Pascal triangle</a>, arXiv:1710.06203 [math.CO], 2017. %F A114212 a(n) = Sum_{k=0..n} (Sum_{j=0..n-k} C(k, j)*C(n-k, j)*((1 + (-1)^k)/2) mod 2). %F A114212 a(n) = A001316(n) + A001316((n-2)/2)*(1 + (-1)^n)/2. %e A114212 From _Omar E. Pol_, Jun 09 2009: (Start) %e A114212 Triangle begins: %e A114212 1; %e A114212 2,3; %e A114212 4,4,4,6; %e A114212 8,6,4,6,8,8,8,12; %e A114212 16,10,4,6,8,8,8,12,16,12,8,12,16,16,16,24; %e A114212 32,18,4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,20,8,12,16,16,16,24,32,24,... %e A114212 Also, we can write the initial term followed by a triangle: %e A114212 1; %e A114212 2; %e A114212 3,4; %e A114212 4,4,6,8; %e A114212 6,4,6,8,8,8,12,16; %e A114212 10,4,6,8,8,8,12,16,12,8,12,16,16,16,24,32; %e A114212 18,4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,20,8,12,16,16,16,24,32,24,16,... %e A114212 Also, we can write first two terms followed by a triangle: %e A114212 1; %e A114212 2; %e A114212 3; %e A114212 4,4; %e A114212 4,6,8,6; %e A114212 4,6,8,8,8,12,16,10; %e A114212 4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,18; %e A114212 4,6,8,8,8,12,16,12,8,12,16,16,16,24,32,20,8,12,16,16,16,24,32,24,16,24,32,... %e A114212 (End) %o A114212 (PARI) T(n,k) = sum(j=0, n-k, binomial(k, j)*binomial(n-k, j)*(1+(-1)^j)/2) % 2; \\ A114213 %o A114212 a(n) = sum(k=0, n-1, T(n,k)); \\ _Michel Marcus_, Jun 06 2021 %Y A114212 Cf. A000079. [_Omar E. Pol_, Jun 09 2009] %K A114212 easy,nonn %O A114212 0,2 %A A114212 _Paul Barry_, Nov 17 2005