cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114213 A generalized Pascal triangle modulo 2.

This page as a plain text file.
%I A114213 #14 Jun 06 2021 09:05:20
%S A114213 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,
%T A114213 1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,
%U A114213 1,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1
%N A114213 A generalized Pascal triangle modulo 2.
%C A114213 Row sums are A114212. Diagonal sums are A114214.
%C A114213 Row sums of inverse are 0^n (conjecture).
%H A114213 Jeffrey Shallit and Lukas Spiegelhofer, <a href="https://arxiv.org/abs/1710.06203">Continuants, run lengths, and Barry's modified Pascal triangle</a>, arXiv:1710.06203 [math.CO], 2017.
%F A114213 T(n, k) = (Sum_{j=0..n-k} C(k, j)*C(n-k, j)*(1+(-1)^j)/2) mod 2.
%e A114213 Triangle begins
%e A114213   1;
%e A114213   1, 1;
%e A114213   1, 1, 1;
%e A114213   1, 1, 1, 1;
%e A114213   1, 1, 0, 1, 1;
%e A114213   1, 1, 0, 0, 1, 1;
%e A114213   1, 1, 1, 0, 1, 1, 1;
%e A114213   1, 1, 1, 1, 1, 1, 1, 1;
%e A114213   1, 1, 0, 1, 0, 1, 0, 1, 1;
%e A114213   1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
%e A114213   1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1;
%o A114213 (PARI) T(n,k) = sum(j=0, n-k, binomial(k, j)*binomial(n-k, j)*(1+(-1)^j)/2) % 2; \\ _Michel Marcus_, Jun 06 2021
%Y A114213 Cf. A114212, A114214.
%K A114213 easy,nonn,tabl
%O A114213 0,1
%A A114213 _Paul Barry_, Nov 17 2005