This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114213 #14 Jun 06 2021 09:05:20 %S A114213 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1, %T A114213 1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1, %U A114213 1,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1 %N A114213 A generalized Pascal triangle modulo 2. %C A114213 Row sums are A114212. Diagonal sums are A114214. %C A114213 Row sums of inverse are 0^n (conjecture). %H A114213 Jeffrey Shallit and Lukas Spiegelhofer, <a href="https://arxiv.org/abs/1710.06203">Continuants, run lengths, and Barry's modified Pascal triangle</a>, arXiv:1710.06203 [math.CO], 2017. %F A114213 T(n, k) = (Sum_{j=0..n-k} C(k, j)*C(n-k, j)*(1+(-1)^j)/2) mod 2. %e A114213 Triangle begins %e A114213 1; %e A114213 1, 1; %e A114213 1, 1, 1; %e A114213 1, 1, 1, 1; %e A114213 1, 1, 0, 1, 1; %e A114213 1, 1, 0, 0, 1, 1; %e A114213 1, 1, 1, 0, 1, 1, 1; %e A114213 1, 1, 1, 1, 1, 1, 1, 1; %e A114213 1, 1, 0, 1, 0, 1, 0, 1, 1; %e A114213 1, 1, 0, 0, 0, 0, 0, 0, 1, 1; %e A114213 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1; %o A114213 (PARI) T(n,k) = sum(j=0, n-k, binomial(k, j)*binomial(n-k, j)*(1+(-1)^j)/2) % 2; \\ _Michel Marcus_, Jun 06 2021 %Y A114213 Cf. A114212, A114214. %K A114213 easy,nonn,tabl %O A114213 0,1 %A A114213 _Paul Barry_, Nov 17 2005