cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A114234 n(k) is the minimum n that requires at least k to make 2*Prime[n]+Prime[k] a prime.

Original entry on oeis.org

3, 11, 5, 47, 17, 106, 64, 157, 133, 26, 236, 308, 72, 496, 122, 207, 152, 142, 197, 259, 514, 497, 1266, 1482, 2005, 2193, 1380, 964, 3662, 534, 4055, 667, 2513, 6083, 1794, 689, 3332, 5771, 3713, 4587, 3450, 12520, 5712, 3242, 10252, 18663, 11912, 25124
Offset: 2

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Comments

Shows the first 204 items; The first appearance in A114233; Sequence is defined for all k>=2.

Examples

			k=2: 2*Prime[3]+Prime[2]=13 is prime, so n(2)=3;
2*Prime[4]+Prime[2]=17
2*Prime[5]+Prime[2]=25, ... 2*Prime[5]+Prime[4]=29 ==> n(4)=5;
		

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 2, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 3; p1 = 5; While[ct < 200, n2 = 1; p2 = Prime[n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 201, ct++ ]; Print[Table[n[k], {k, 2, nm}]]]; n1++; p1 = Prime[n1]];

A114237 n(k) is the minimum n that requires at least k to make 2*Prime[n]+Prime[n-k] a prime.

Original entry on oeis.org

3, 12, 9, 10, 8, 17, 97, 20, 57, 50, 30, 56, 207, 171, 210, 134, 303, 127, 121, 275, 376, 278, 299, 413, 432, 251, 746, 949, 389, 742, 725, 1790, 1375, 3605, 783, 1812, 895, 1257, 2079, 2962, 4799, 3456, 6356, 1701, 5255, 4669, 5011, 7164, 3012, 8361, 11210
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			2*Prime[3]+Prime[3-1]=2*5+3=13 is prime, so n(1)=3;
2*Prime[4]+Prime[4-1]=2*7+5=19 is prime, not counted
...
2*Prime[8]+Prime[8-1]=2*19+17=55 is not prime
2*Prime[8]+Prime[8-2]=2*19+13=51 is not prime
2*Prime[8]+Prime[8-3]=2*19+11=49 is not prime
...
2*Prime[8]+Prime[8-5]=2*19+5=43 is prime, so n(5)=8;
		

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 3; p1 = 5; While[ct < 200, n2 = 1; p2 = Prime[n1 - n2]; \ While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 - n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]

A114264 n(k) is the minimum number that require at least k to make Prime[n]+2*Prime[n+k] a prime.

Original entry on oeis.org

2, 10, 9, 7, 8, 40, 80, 28, 34, 73, 52, 174, 86, 105, 127, 161, 326, 225, 356, 154, 245, 394, 362, 350, 279, 586, 846, 321, 929, 1822, 1683, 1208, 1091, 2025, 947, 2108, 1361, 3181, 372, 2774, 1898, 3785, 3676, 2194, 6447, 2919, 3590, 7092, 4955, 2474, 19409
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			Prime[2]+2*Prime[2+1]=3+2*5=13 is prime, so n(1)=2;
Prime[3]+2*Prime[3+1]=5+2*7=19 is prime, not counted;
...
Prime[7]+2*Prime[7+4]=17+2*31=79 is prime, so n(4)=7;
		

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 2; p1 = 3; While[ct < 200, n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2*p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; If[n[n2] == 0, n[n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]

A114267 a(n) = smallest k such that A114266(k) = n.

Original entry on oeis.org

1, 11, 4, 12, 19, 13, 34, 31, 36, 42, 62, 59, 142, 158, 247, 173, 240, 273, 204, 417, 231, 669, 172, 348, 965, 1003, 115, 1369, 370, 1244, 1251, 1373, 983, 1109, 2489, 1028, 2583, 1506, 6506, 6773, 7762, 5525, 2463, 6534, 6451, 3587, 4944, 3119, 3178, 4880
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Comments

Inverse sequence to A114266.

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 1; p1 = 2; While[ct < 200, n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]

Extensions

I clarified the definition. - N. J. A. Sloane, Jan 08 2011
Showing 1-4 of 4 results.