This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114254 #105 Sep 16 2023 17:42:49 %S A114254 1,25,101,261,537,961,1565,2381,3441,4777,6421,8405,10761,13521,16717, %T A114254 20381,24545,29241,34501,40357,46841,53985,61821,70381,79697,89801, %U A114254 100725,112501,125161,138737,153261,168765,185281,202841,221477,241221 %N A114254 Sum of all terms on the two principal diagonals of a 2n+1 X 2n+1 square spiral. %H A114254 Michael De Vlieger, <a href="/A114254/b114254.txt">Table of n, a(n) for n = 0..10000</a> %H A114254 Project Euler, <a href="https://projecteuler.net/problem=28">Problem 28. Number Spiral Diagonals</a> %H A114254 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A114254 O.g.f.: 3/(-1+x) + 16/(-1+x)^2 + 44/(-1+x)^3 + 32/(-1+x)^4 = (1 + 21*x + 7*x^2 + 3*x^3)/(-1+x)^4. - _R. J. Mathar_, Feb 10 2008 %F A114254 a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3. [Corrected by _Arie Groeneveld_, Aug 17 2008] %e A114254 For n = 1, the 3 X 3 spiral is %e A114254 . %e A114254 7---8---9 %e A114254 | %e A114254 6 1---2 %e A114254 | | %e A114254 5---4---3 %e A114254 . %e A114254 so a(1) = 7 + 9 + 1 + 5 + 3 = 25. %e A114254 . %e A114254 For n = 2, the 5 X 5 spiral is %e A114254 . %e A114254 21--22--23--24--25 %e A114254 | %e A114254 20 7---8---9--10 %e A114254 | | | %e A114254 19 6 1---2 11 %e A114254 | | | | %e A114254 18 5---4---3 12 %e A114254 | | %e A114254 17--16--15--14--13 %e A114254 . %e A114254 so a(2) = 21 + 25 + 7 + 9 + 1 + 5 + 3 + 17 + 13 = 101. %t A114254 Array[1 + 10 #^2 + (16 #^3 + 26 #)/3 &, 36, 0] (* _Michael De Vlieger_, Mar 01 2018 *) %o A114254 (PARI) a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3; \\ _Joerg Arndt_, Mar 01 2018 %Y A114254 Cf. A016754, A054569, A053755, A054554 for diagonals from origin. %Y A114254 Cf. A325958 (first differences). %K A114254 easy,nonn %O A114254 0,2 %A A114254 _William A. Tedeschi_, Feb 06 2008, Mar 01 2008