This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114261 #27 Feb 29 2024 06:25:36 %S A114261 961527834,7351062489,8105632794,8401253976,8731945026,9164072385, %T A114261 9238750614,9615278340,9847103256,72308154699,73510624890,81056327940, %U A114261 83170652949,83792140506,84012539760,87319450260,91602408573,91640723850,92387506140,96152783400,98471032560 %N A114261 Numbers k such that the 5th power of k contains exactly 5 copies of each digit of k. %C A114261 Some of the early terms of the sequence are also pandigital, i.e. they contain all the 10 digits once. This is probably accidental, but quite curious! %C A114261 All terms are divisible by 9. First decimal digit of a term is 6 or larger. - _Chai Wah Wu_, Feb 27 2024 %H A114261 Chai Wah Wu, <a href="/A114261/b114261.txt">Table of n, a(n) for n = 1..26</a> %e A114261 E.g. 961527834 is in the sequence since its 5th power 821881685441327565743977956591832631269739424 contains five 9's, five 6's, five 1's and so on. %o A114261 (Python) %o A114261 from itertools import count, islice %o A114261 from sympy import integer_nthroot %o A114261 def A114261_gen(): # generator of terms %o A114261 for l in count(1): %o A114261 a = integer_nthroot(10**(5*l-1),5)[0] %o A114261 if (a9:=a%9): %o A114261 a += 9-a9 %o A114261 for b in range(a,10**l,9): %o A114261 if sorted(str(b)*5)==sorted(str(b**5)): %o A114261 yield b %o A114261 A114261_list = list(islice(A114261_gen(),5)) # _Chai Wah Wu_, Feb 27 2024 %Y A114261 Cf. A114258, A114259, A114260, A199632. %K A114261 base,nonn %O A114261 1,1 %A A114261 _Giovanni Resta_, Nov 18 2005 %E A114261 a(8)-a(9) from _Ray Chandler_, Aug 23 2023 %E A114261 a(10)-a(21) from _Chai Wah Wu_, Feb 28 2024