cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114262 p is the smallest prime that is greater than prime(n) such that prime(n)+2*p is a prime.

This page as a plain text file.
%I A114262 #6 Oct 31 2013 17:28:35
%S A114262 5,7,11,13,17,31,41,37,37,41,47,43,47,67,73,61,83,83,79,83,89,97,97,
%T A114262 107,103,107,151,137,127,131,139,151,191,157,179,167,173,223,199,181,
%U A114262 191,193,197,211,227,233,227,241,257,277,307,251,313,277,283,271,293,281
%N A114262 p is the smallest prime that is greater than prime(n) such that prime(n)+2*p is a prime.
%H A114262 Reinhard Zumkeller, <a href="/A114262/b114262.txt">Table of n, a(n) for n = 2..10000</a>
%e A114262 n=2: prime[2]=3; 3+2*5=13 is prime, so a(2)=5;
%e A114262 n=3: prime[3]=5; 5+2*7=19 is prime, so a(3)=7;
%e A114262 ...
%e A114262 n=7: prime[7]=17; 17+2*19=55 is not prime
%e A114262 17+2*23=63 is not prime
%e A114262 ...
%e A114262 17+2*31=79 is prime, so a(7)=31.
%t A114262 Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 2, 201}]
%o A114262 (Haskell)
%o A114262 a114262 n = head [q | let (p:ps) = drop (n - 1) a000040_list,
%o A114262                       q <- ps, a010051 (p + 2 * q) == 1]
%o A114262 -- _Reinhard Zumkeller_, Oct 29 2013
%Y A114262 Cf. A114227, A114230, A073703, A114235.
%Y A114262 Cf. A000040, A010051.
%K A114262 easy,nonn
%O A114262 2,1
%A A114262 _Lei Zhou_, Nov 20 2005
%E A114262 Edited definition to conform to OEIS style. - _Reinhard Zumkeller_, Oct 31 2013