This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114265 #13 Feb 12 2015 11:29:38 %S A114265 3,5,7,17,19,17,19,23,37,31,41,53,67,53,73,61,61,71,89,97,83,83,97, %T A114265 103,113,109,107,139,113,127,167,139,157,179,151,197,173,173,223,211, %U A114265 199,239,211,227,199,233,239,227,229,233,277,241,251,271,283,271,271,281 %N A114265 Smallest prime p greater than prime(n) such that 2*prime(n) + p is a prime. %C A114265 Note that p is next prime after prime(n) iff prime(n) is a term in A173971. - _Zak Seidov_, Feb 11 2015 %H A114265 Reinhard Zumkeller, <a href="/A114265/b114265.txt">Table of n, a(n) for n = 1..10000</a> %e A114265 n=1: 2*prime[1]+3=2*2+3=7 is prime, so a(1)=3; %e A114265 n=2: 2*prime[2]+5=2*3+5=11 is prime, so a(2)=5; %e A114265 ... %e A114265 n=4: 2*prime[4]+3=2*7+3=17 is prime, so a(4)=17. %t A114265 Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 1, 200}] %o A114265 (Haskell) %o A114265 a114265 n = head [p | let (q:qs) = drop (n - 1) a000040_list, p <- qs, %o A114265 a010051 (2 * q + p) == 1] %o A114265 -- _Reinhard Zumkeller_, Oct 31 2013 %o A114265 (PARI) a(n)=forprime(p=prime(n)+1,,if(isprime(2*prime(n)+p),return(p))) %o A114265 vector(100,n,a(n)) \\ _Derek Orr_, Feb 11 2015 %Y A114265 Cf. A114227, A114230, A073703, A114235, A114262. %Y A114265 Cf. A010051, A000040, A173971. %K A114265 easy,nonn %O A114265 1,1 %A A114265 _Lei Zhou_, Nov 20 2005 %E A114265 Edited definition to conform to OEIS style. - _Reinhard Zumkeller_, Oct 31 2013