This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114266 #13 Aug 05 2017 11:29:53 %S A114266 1,1,1,3,3,1,1,1,3,1,2,4,6,2,6,2,1,2,5,5,2,1,2,3,5,3,1,6,1,1,8,2,4,7, %T A114266 1,9,3,2,9,7,5,10,4,5,1,5,5,1,1,1,8,1,1,4,6,2,1,2,12,10,1,11,8,3,11,2, %U A114266 2,1,4,1,7,2,3,2,11,2,3,3,3,1,1,5,2,5,1,7,3,3,4,6,4,7,4,1,9,5,3,2,4,7,2,9,2 %N A114266 a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime. %H A114266 Reinhard Zumkeller, <a href="/A114266/b114266.txt">Table of n, a(n) for n = 1..10000</a> %e A114266 n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1; %e A114266 n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1; %e A114266 ... %e A114266 n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime %e A114266 ... %e A114266 2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3. %t A114266 Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}] %t A114266 mnm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[n+m]],m++];m]; Array[mnm,110] (* _Harvey P. Dale_, Aug 05 2017 *) %o A114266 (Haskell) %o A114266 a114266 n = head [m | m <- [1..], %o A114266 a010051 (2 * a000040 n + a000040 (n + m)) == 1] %o A114266 -- _Reinhard Zumkeller_, Oct 29 2013 %Y A114266 Cf. A114227, A114230, A073703, A114235, A114262, A114228, A114231, A114233, A114236, A114263, A114265, A114267. %Y A114266 Cf. A000040, A010051. %K A114266 easy,nonn %O A114266 1,4 %A A114266 _Lei Zhou_, Nov 20 2005 %E A114266 Edited definition to conform to OEIS style. - _N. J. A. Sloane_, Jan 08 2011