This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114277 #27 May 16 2022 04:53:07 %S A114277 1,5,19,67,232,804,2806,9878,35072,125512,452388,1641028,5986993, %T A114277 21954973,80884423,299233543,1111219333,4140813373,15478839553, %U A114277 58028869153,218123355523,821908275547,3104046382351,11747506651599 %N A114277 Sum of the lengths of the second ascents in all Dyck paths of semilength n+2. %C A114277 Also number of Dyck paths of semilength n+4 having length of second ascent equal to three. Example: a(1)=5 because we have UD(UUU)DUDDD, UD(UUU)DDUDD, UD(UUU)DDDUD, UUD(UUU)DDDD and UUDD(UUU)DDD (second ascents shown between parentheses). Partial sums of A002057. Column 3 of A114276. a(n)=absolute value of A104496(n+3). %C A114277 Also number of Dyck paths of semilength n+3 that do not start with a pyramid (a pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis; here U=(1,1) and D=(1,-1); this definition differs from the one in A091866). Equivalently, a(n)=A127156(n+3,0). Example: a(1)=5 because we have UUDUDDUD, UUDUDUDD, UUUDUDDD, UUDUUDDD and UUUDDUDD. - _Emeric Deutsch_, Feb 27 2007 %H A114277 Vincenzo Librandi, <a href="/A114277/b114277.txt">Table of n, a(n) for n = 0..300</a> %F A114277 a(n) = 4*Sum_{j=0..n} binomial(2*j+3, j)/(j+4). %F A114277 G.f.: C^4/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. %F A114277 a(n) = c(n+3) - (c(0) + c(1) + ... + c(n+2)), where c(k)=binomial(2k,k)/(k+1) is a Catalan number (A000108). - _Emeric Deutsch_, Feb 27 2007 %F A114277 D-finite with recurrence: n*(n+4)*a(n) = (5*n^2 + 14*n + 6)*a(n-1) - 2*(n+1)*(2*n+3)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012 %F A114277 a(n) ~ 2^(2*n+7)/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012 %F A114277 a(n) = exp((2*i*Pi)/3)-4*binomial(2*n+5,n+1)*hypergeom([1,3+n,n+7/2],[n+2,n+6],4)/ (n+5). - _Peter Luschny_, Feb 26 2017 %F A114277 a(n-1) = Sum_{i+j+k+l<n} C(i)C(j)C(k)C(l), where C=A000108 Catalan number. - _Yuchun Ji_, Jan 10 2019 %e A114277 a(3)=5 because the total length of the second ascents in UD(U)DUD, UD(UU)DD, UUDD(U)D, UUD(U)DD and UUUDDD (shown between parentheses) is 5. %p A114277 a:=n->4*sum(binomial(2*j+3,j)/(j+4),j=0..n): seq(a(n),n=0..28); %t A114277 Table[4*Sum[Binomial[2j+3,j]/(j+4),{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 19 2012 *) %o A114277 (Python) %o A114277 from functools import cache %o A114277 @cache %o A114277 def B(n, k): %o A114277 if n <= 0 or k <= 0: return 0 %o A114277 if n == k: return 1 %o A114277 return B(n - 1, k) + B(n, k - 1) %o A114277 def A114277(n): return B(n + 5, n + 1) %o A114277 print([A114277(n) for n in range(24)]) # _Peter Luschny_, May 16 2022 %Y A114277 Cf. A002057, A114276, A104496, A127156, A279557. %Y A114277 Cf. A014137 (n=1), A014138 (n=2), A001453 (n=3), this sequence (n=4), A143955 (n=5), A323224 (array). %K A114277 nonn %O A114277 0,2 %A A114277 _Emeric Deutsch_, Nov 20 2005 %E A114277 More terms from _Emeric Deutsch_, Feb 27 2007