cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114277 Sum of the lengths of the second ascents in all Dyck paths of semilength n+2.

This page as a plain text file.
%I A114277 #27 May 16 2022 04:53:07
%S A114277 1,5,19,67,232,804,2806,9878,35072,125512,452388,1641028,5986993,
%T A114277 21954973,80884423,299233543,1111219333,4140813373,15478839553,
%U A114277 58028869153,218123355523,821908275547,3104046382351,11747506651599
%N A114277 Sum of the lengths of the second ascents in all Dyck paths of semilength n+2.
%C A114277 Also number of Dyck paths of semilength n+4 having length of second ascent equal to three. Example: a(1)=5 because we have UD(UUU)DUDDD, UD(UUU)DDUDD, UD(UUU)DDDUD, UUD(UUU)DDDD and UUDD(UUU)DDD (second ascents shown between parentheses). Partial sums of A002057. Column 3 of A114276. a(n)=absolute value of A104496(n+3).
%C A114277 Also number of Dyck paths of semilength n+3 that do not start with a pyramid (a pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis; here U=(1,1) and D=(1,-1); this definition differs from the one in A091866). Equivalently, a(n)=A127156(n+3,0). Example: a(1)=5 because we have UUDUDDUD, UUDUDUDD, UUUDUDDD, UUDUUDDD and UUUDDUDD. - _Emeric Deutsch_, Feb 27 2007
%H A114277 Vincenzo Librandi, <a href="/A114277/b114277.txt">Table of n, a(n) for n = 0..300</a>
%F A114277 a(n) = 4*Sum_{j=0..n} binomial(2*j+3, j)/(j+4).
%F A114277 G.f.: C^4/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
%F A114277 a(n) = c(n+3) - (c(0) + c(1) + ... + c(n+2)), where c(k)=binomial(2k,k)/(k+1) is a Catalan number (A000108). - _Emeric Deutsch_, Feb 27 2007
%F A114277 D-finite with recurrence: n*(n+4)*a(n) = (5*n^2 + 14*n + 6)*a(n-1) - 2*(n+1)*(2*n+3)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012
%F A114277 a(n) ~ 2^(2*n+7)/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012
%F A114277 a(n) = exp((2*i*Pi)/3)-4*binomial(2*n+5,n+1)*hypergeom([1,3+n,n+7/2],[n+2,n+6],4)/ (n+5). - _Peter Luschny_, Feb 26 2017
%F A114277 a(n-1) = Sum_{i+j+k+l<n} C(i)C(j)C(k)C(l), where C=A000108 Catalan number. - _Yuchun Ji_, Jan 10 2019
%e A114277 a(3)=5 because the total length of the second ascents in UD(U)DUD, UD(UU)DD, UUDD(U)D, UUD(U)DD and UUUDDD (shown between parentheses) is 5.
%p A114277 a:=n->4*sum(binomial(2*j+3,j)/(j+4),j=0..n): seq(a(n),n=0..28);
%t A114277 Table[4*Sum[Binomial[2j+3,j]/(j+4),{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 19 2012 *)
%o A114277 (Python)
%o A114277 from functools import cache
%o A114277 @cache
%o A114277 def B(n, k):
%o A114277     if n <= 0 or k <= 0: return 0
%o A114277     if n == k: return 1
%o A114277     return B(n - 1, k) + B(n, k - 1)
%o A114277 def A114277(n): return B(n + 5, n + 1)
%o A114277 print([A114277(n) for n in range(24)]) # _Peter Luschny_, May 16 2022
%Y A114277 Cf. A002057, A114276, A104496, A127156, A279557.
%Y A114277 Cf. A014137 (n=1), A014138 (n=2), A001453 (n=3), this sequence (n=4), A143955 (n=5), A323224 (array).
%K A114277 nonn
%O A114277 0,2
%A A114277 _Emeric Deutsch_, Nov 20 2005
%E A114277 More terms from _Emeric Deutsch_, Feb 27 2007