This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114288 #9 Nov 10 2021 10:19:26 %S A114288 1,2,3,4,5,6,7,8,9,4,5,6,7,8,9,1,2,3,7,8,9,1,2,3,4,5,6,2,1,4,3,6,5,8, %T A114288 9,7,3,6,5,8,9,7,2,1,4,8,9,7,2,1,4,3,6,5,5,3,1,6,4,2,9,7,8,6,4,2,9,7, %U A114288 8,5,3,1,9,7,8,5,3,1,6,4,2 %N A114288 Lexicographically earliest solution of any 9 X 9 sudoku, read by rows. %C A114288 See A107739 for definition of a sudoku. %e A114288 1,2,3|4,5,6|7,8,9, %e A114288 4,5,6|7,8,9|1,2,3, %e A114288 7,8,9|1,2,3|4,5,6, %e A114288 ----------------- %e A114288 2,1,4|3,6,5|8,9,7, %e A114288 3,6,5|8,9,7|2,1,4, %e A114288 8,9,7|2,1,4|3,6,5, %e A114288 ----------------- %e A114288 5,3,1|6,4,2|9,7,8, %e A114288 6,4,2|9,7,8|5,3,1, %e A114288 9,7,8|5,3,1|6,4,2 %o A114288 (PARI) A114288(m=3,n=3)={my(A=Mat([1..m*n]),L); for(i=2,m*n, A=matconcat([A; vector(#A, j, if(i%m!=1, A[i-1,(j-1+n)%#A+1], j>1||L=A[1,]; L=setminus(L, [j=setminus(L,Set(A[,j]))[1+(i==n+1&&j==m*n-1)]]); j))])); A} \\ Also allows to produce minimal sudokus of other sizes, e.g., 2x3 or 3x2. - _M. F. Hasler_, Nov 09 2021 %Y A114288 Cf. A107739, A109741. %K A114288 fini,full,nonn,tabf %O A114288 1,2 %A A114288 _Zak Seidov_, Nov 21 2005; corrected Nov 23 2005