This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114324 #16 Oct 16 2020 10:01:25 %S A114324 1,0,0,0,0,1,3,6,10,16,26,39,56,79,111,150,200,265,349,453,586,749, %T A114324 957,1209,1522,1903,2379,2950,3654,4500,5534,6771,8271,10063,12228, %U A114324 14799,17884,21543,25919,31087,37233,44477,53063,63149,75059,89014,105436,124631 %N A114324 Number of partitions of n with a product greater than n. %C A114324 The Heinz numbers of these partitions are given by A325037. - _Gus Wiseman_, Mar 27 2019 %H A114324 Alois P. Heinz, <a href="/A114324/b114324.txt">Table of n, a(n) for n = 0..1000</a> %H A114324 Pankaj Jyoti Mahanta, <a href="https://arxiv.org/abs/2010.07353">On the number of partitions of n whose product of the summands is at most n</a>, arXiv:2010.07353 [math.CO], 2020. %e A114324 a(6) = 3 since there are 3 partitions of 6 with product greater than 6: {3,3}, {2,2,2}, {4,2}. %e A114324 From _Gus Wiseman_, Mar 27 2019: (Start) %e A114324 The a(5) = 1 through a(9) = 16 partitions: %e A114324 (32) (33) (43) (44) (54) %e A114324 (42) (52) (53) (63) %e A114324 (222) (322) (62) (72) %e A114324 (331) (332) (333) %e A114324 (421) (422) (432) %e A114324 (2221) (431) (441) %e A114324 (521) (522) %e A114324 (2222) (531) %e A114324 (3221) (621) %e A114324 (3311) (3222) %e A114324 (3321) %e A114324 (4221) %e A114324 (4311) %e A114324 (5211) %e A114324 (22221) %e A114324 (32211) %e A114324 (End) %t A114324 << DiscreteMath`Combinatorica`; lst=Table[Length@Select[Partitions[n], (Times @@ # > n) &],{n,50}] %t A114324 Table[Length[Select[IntegerPartitions[n],Times@@#>n&]],{n,0,20}] (* _Gus Wiseman_, Mar 27 2019 *) %Y A114324 Cf. A001055, A028422, A096276, A114324, A301987, A319000, A319005, A319916, A325037, A325038, A325044. %K A114324 nonn %O A114324 0,7 %A A114324 _Giovanni Resta_, Feb 06 2006 %E A114324 a(0) = 1 prepended by _Gus Wiseman_, Mar 27 2019