This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114331 #15 Feb 16 2025 08:32:59 %S A114331 4,6,10,12,14,18,22,26,30,34,38,42,46,51,58,60,62,69,72,74,82,86,94, %T A114331 99,102,106,108,111,122,129,134,138,146,150,155,158,166,172,178,180, %U A114331 183,192,194,198,206,218,226,228,232,237,240,249,254,262,267,270 %N A114331 Observe that A052248(n) = greatest prime divisor q (say) of all composite numbers between p = prime(n) and next prime. There is only one composite number in this range which is divisible by q. Sequence lists these composite numbers. %C A114331 The uniqueness follows from generalization of Bertrand's Postulate. - _Franklin T. Adams-Watters_. %H A114331 Robert Israel, <a href="/A114331/b114331.txt">Table of n, a(n) for n = 2..10000</a> %H A114331 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BertrandsPostulate.html">Bertrand's Postulate</a> %p A114331 p:= 3: R:= NULL: %p A114331 for i from 2 to 100 do %p A114331 pp:= p; p:= nextprime(p); %p A114331 rmax:= 0: %p A114331 for q from pp+1 to p-1 do %p A114331 r:= max(numtheory:-factorset(q)); %p A114331 if r > rmax then rmax:= r; qmax:= q fi %p A114331 od; %p A114331 R:= R, qmax %p A114331 od: %p A114331 R; # _Robert Israel_, Apr 01 2021 %Y A114331 Cf. A052248, A114349. %K A114331 nonn %O A114331 2,1 %A A114331 _N. J. A. Sloane_, based on correspondence from _Leroy Quet_ and _Hugo Pfoertner_, Feb 22 2006