cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114336 Pythagorean triples of nearly isosceles triangle.

Original entry on oeis.org

3, 4, 5, 20, 21, 29, 119, 120, 169, 696, 697, 985, 4059, 4060, 5741, 23660, 23661, 33461, 137903, 137904, 195025, 803760, 803761, 1136689, 4684659, 4684660, 6625109, 27304196, 27304197, 38613965, 159140519, 159140520, 225058681, 927538920, 927538921, 1311738121, 5406093003, 5406093004, 7645370045
Offset: 1

Views

Author

Heinrich Baldauf (heinbald25(AT)web.de), Feb 07 2006

Keywords

Comments

Pythagorean triples of exact isosceles triangles do not exist because 2a^2 = c^2 has no integer solution. a^2 + (a+1)^2 = c^2 are nearly isosceles triangles and give a recursive series.

Examples

			119^2 + 120^2 = 169^2.
Triples begin:
  n=1:   3,   4,   5;
  n=2:  20,  21,  29;
  n=3: 119, 120, 169;
  n=4: 696, 697, 985;
  ...
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • BASIC
    a(1):= 3
    c(1):= 5
    for n:=2 until 10 step 1
    a(n):= 3*a(n-1) + 2*c(n-1) + 1
    c(n):= 4*a(n-1) + 3*c(n-1) + 2
    print a(n),a(n)+1,c(n)
    next n
    end
  • Mathematica
    a=Table[(LucasL[2*n+1,2]-2)/4,{n,1,13}];Apply[Join,Map[{#,#+1,Sqrt[2#^2+2#+1]}&,a]] (* Miguel-Ángel Pérez García-Ortega, Nov 06 2024 *)

Formula

a^2 + (a+1)^2 = c^2, a(n) = 3a(n-1) + 2c(n-1) + 1, c(n) = 4a(n-1) + 3c(n-1) + 2.
a(n) = (A002315(n) - 1)/2. - Miguel-Ángel Pérez García-Ortega, Nov 06 2024

Extensions

More terms from Robert Hutchins, Jun 10 2009
More terms from Miguel-Ángel Pérez García-Ortega, Nov 06 2024