A114336 Pythagorean triples of nearly isosceles triangle.
3, 4, 5, 20, 21, 29, 119, 120, 169, 696, 697, 985, 4059, 4060, 5741, 23660, 23661, 33461, 137903, 137904, 195025, 803760, 803761, 1136689, 4684659, 4684660, 6625109, 27304196, 27304197, 38613965, 159140519, 159140520, 225058681, 927538920, 927538921, 1311738121, 5406093003, 5406093004, 7645370045
Offset: 1
Examples
119^2 + 120^2 = 169^2. Triples begin: n=1: 3, 4, 5; n=2: 20, 21, 29; n=3: 119, 120, 169; n=4: 696, 697, 985; ...
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Links
- C.C. Chen and T.A. Peng, Classroom note: Almost-isosceles right-angled triangles, Australasian Journal of Combinatorics, Volume 11(1995), pp. 263-267. See p. 266.
Programs
-
BASIC
a(1):= 3 c(1):= 5 for n:=2 until 10 step 1 a(n):= 3*a(n-1) + 2*c(n-1) + 1 c(n):= 4*a(n-1) + 3*c(n-1) + 2 print a(n),a(n)+1,c(n) next n end
-
Mathematica
a=Table[(LucasL[2*n+1,2]-2)/4,{n,1,13}];Apply[Join,Map[{#,#+1,Sqrt[2#^2+2#+1]}&,a]] (* Miguel-Ángel Pérez García-Ortega, Nov 06 2024 *)
Formula
a^2 + (a+1)^2 = c^2, a(n) = 3a(n-1) + 2c(n-1) + 1, c(n) = 4a(n-1) + 3c(n-1) + 2.
a(n) = (A002315(n) - 1)/2. - Miguel-Ángel Pérez García-Ortega, Nov 06 2024
Extensions
More terms from Robert Hutchins, Jun 10 2009
More terms from Miguel-Ángel Pérez García-Ortega, Nov 06 2024
Comments