cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114364 a(n) = n*(n+1)^2.

This page as a plain text file.
%I A114364 #31 May 22 2021 04:38:37
%S A114364 4,18,48,100,180,294,448,648,900,1210,1584,2028,2548,3150,3840,4624,
%T A114364 5508,6498,7600,8820,10164,11638,13248,15000,16900,18954,21168,23548,
%U A114364 26100,28830,31744,34848,38148,41650,45360,49284,53428,57798,62400
%N A114364 a(n) = n*(n+1)^2.
%C A114364 Former name was "Numbers k such that k*x^3 + x + 1 is not prime."
%C A114364 Theorem: y = k*x^3 + x + 1 is not prime for k = 4, 18, 48, ..., n*(n+1)^2. Proof: n*(n+1)^2*x^3 + x + 1 = ((n+1)*x + 1)*((n^2+n)*x^2 - n*x + 1). Thus (n+1)*x + 1 divides y. This could possibly be used as a pre-test for compositeness. This sequence is the same as beginning with the third term of A045991.
%H A114364 Jinyuan Wang, <a href="/A114364/b114364.txt">Table of n, a(n) for n = 1..1000</a>
%H A114364 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A114364 a(n) = n*(n+1)^2.
%F A114364 G.f.: 2 * (2 + x)/(-1 + x)^4. - _Michael De Vlieger_, Feb 03 2019
%F A114364 From _Amiram Eldar_, Jan 02 2021: (Start)
%F A114364 Sum_{n>=1} 1/a(n) = 2 - Pi^2/6.
%F A114364 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 +2*log(2) - 2. (End)
%F A114364 E.g.f.: exp(x)*x*(4 + 5*x + x^2). - _Stefano Spezia_, May 20 2021
%p A114364 seq(2*binomial(n,2)*n, n=2..40); # _Zerinvary Lajos_, Apr 25 2007
%t A114364 CoefficientList[Series[(2 (2 + x))/(-1 + x)^4, {x, 0, 38}], x] (* or *)
%t A114364 Array[# (# + 1)^2 &, 39] (* _Michael De Vlieger_, Feb 03 2019 *)
%o A114364 (PARI) g2(n) = for(x=1,n,y=x*(x+1)^2;print1(y","))
%Y A114364 Cf. A045991.
%Y A114364 Equals twice A006002.
%K A114364 easy,nonn
%O A114364 1,1
%A A114364 _Cino Hilliard_, Feb 09 2006
%E A114364 Name changed by _Jon E. Schoenfield_, Feb 03 2019