This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114370 #20 Jun 04 2024 11:49:44 %S A114370 2,3,5,53,55555553,55555555555555555555555553, %T A114370 2777777777777777777777777777777777777 %N A114370 Primes p such that the sum of numbers from prime p to nextprime(p)-1 is a repdigit. %C A114370 The sequence is built under the (reasonable) assumption that 100+2*log(p)^2 is an upper bound to the largest gap between a prime p and nextprime(p). Under this assumption there are no other terms with less than 100 digits. %e A114370 nextprime(55555555555555555555555553) is 55555555555555555555555559 and the sum %e A114370 from 55555555555555555555555553 to 55555555555555555555555558 gives the repdigit 333333333333333333333333333. %o A114370 (Python) %o A114370 from itertools import count, islice %o A114370 from sympy import isprime, nextprime %o A114370 from sympy.abc import x,y %o A114370 from sympy.solvers.diophantine.diophantine import diop_quadratic %o A114370 def A114370_gen(): # generator of terms %o A114370 for l in count(1): %o A114370 c = [] %o A114370 for m in range(1,10): %o A114370 k = m*(10**l-1)//9<<1 %o A114370 for a, b in diop_quadratic((x-y)*(x+y-1)-k): %o A114370 if isprime(b) and a == nextprime(b): %o A114370 c.append(b) %o A114370 yield from sorted(c) %o A114370 A114370_list = list(islice(A114370_gen(),6)) # _Chai Wah Wu_, Jun 02 2024 %Y A114370 Cf. A010785, A054268. %K A114370 base,nonn,more %O A114370 1,1 %A A114370 _Giovanni Resta_, Feb 09 2006