cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114388 Transpose of table A115872.

This page as a plain text file.
%I A114388 #7 Jan 04 2022 14:16:19
%S A114388 1,1,2,3,2,3,1,6,3,4,7,2,7,4,5,3,14,3,12,5,6,7,6,15,4,14,6,7,1,14,7,
%T A114388 28,5,15,7,8,15,2,15,12,30,6,24,8,9,7,30,3,28,14,31,7,28,9,10,3,14,31,
%U A114388 4,30,15,56,8,30,10,11,3,6,15,60,5,31,24,60,9,31,11,12,5,6,12,28,62,6
%N A114388 Transpose of table A115872.
%t A114388 X[a_, b_] := Module[{A, B, C, x},
%t A114388      A = Reverse@IntegerDigits[a, 2];
%t A114388      B = Reverse@IntegerDigits[b, 2];
%t A114388      C = Expand[
%t A114388         Sum[A[[i]]*x^(i - 1), {i, 1, Length[A]}]*
%t A114388         Sum[B[[i]]*x^(i - 1), {i, 1, Length[B]}]];
%t A114388      PolynomialMod[C, 2] /. x -> 2];
%t A114388 S[n_, k_] := Module[{x = BitXor[n - 1, 2 n - 1], k0 = k},
%t A114388      For[i = 1, True, i++,If[n*i == X[x, i],
%t A114388      If[k0 == 1, Return[i], k0--]]]];
%t A114388 T[n_, k_] := S[k, n];
%t A114388 Table[T[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Jan 04 2022 *)
%Y A114388 Cf. A115872.
%Y A114388 First row: A115873.
%K A114388 nonn,tabl
%O A114388 1,3
%A A114388 _Antti Karttunen_, Feb 07 2006