This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114422 #11 Sep 08 2022 08:45:23 %S A114422 1,1,1,3,3,1,7,9,5,1,19,26,19,7,1,51,75,65,33,9,1,141,216,211,132,51, %T A114422 11,1,393,623,665,483,235,73,13,1,1107,1800,2058,1674,963,382,99,15,1, %U A114422 3139,5211,6294,5598,3663,1739,581,129,17,1,8953,15115,19095,18261,13243 %N A114422 Riordan array (1/sqrt(1-2*x-3*x^2), M(x)-1) where M(x) is the g.f. of the Motzkin numbers A001006. %C A114422 First column is central trinomial numbers A002426. %C A114422 Second column is A005774. %C A114422 Third column is A025568. %C A114422 Row sums are A116387. %C A114422 Diagonal sums are A116388. %C A114422 Product of A007318 and A116382. %C A114422 Column k has e.g.f. exp(x)*Sum_{j=0..k} C(k,j)*Bessel_I(k+j,2*x). %H A114422 G. C. Greubel, <a href="/A114422/b114422.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A114422 Riordan array (1/sqrt(1-2*x-3*x^2), (1-x-2*x^2-sqrt(1-2*x-3*x^2) ) / (2*x^2)). %F A114422 Number triangle T(n,k) = Sum_{j=0..n} C(n,j-k)*C(j,n-j). %e A114422 Triangle begins %e A114422 1, %e A114422 1, 1, %e A114422 3, 3, 1, %e A114422 7, 9, 5, 1, %e A114422 19, 26, 19, 7, 1, %e A114422 51, 75, 65, 33, 9, 1, %e A114422 141, 216, 211, 132, 51, 11, 1 %t A114422 T[n_, k_] := Sum[Binomial[n, j - k]*Binomial[j, n - j], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, Feb 28 2017 *) %o A114422 (PARI) {T(n,k) = sum(j=0,n, binomial(n, j-k)*binomial(j, n-j))}; %o A114422 for(n=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 15 2018 %o A114422 (Magma) [[(&+[Binomial(n, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Dec 15 2018 %o A114422 (Sage) [[sum(binomial(n, j-k)*binomial(j, n-j) for j in range(n+1)) for k in range(n+1)] for n in range(10)] # _G. C. Greubel_, Dec 15 2018 %o A114422 (GAP) T:=Flat(List([0..10], n->List([0..n], k->Sum([0..n], j-> Binomial(n, j-k)*Binomial(j, n-j))))); # _G. C. Greubel_, Dec 15 2018 %K A114422 easy,nonn,tabl %O A114422 0,4 %A A114422 _Paul Barry_, Feb 12 2006