This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114429 #32 Aug 01 2024 09:23:14 %S A114429 7,73,883,9931,99991,999961,9999973,99999589,999999193,9999999703, %T A114429 99999999763,999999999961,9999999998491,99999999999973, %U A114429 999999999997969,9999999999999643,99999999999998809,999999999999998929 %N A114429 Larger of the greatest twin prime pair with n digits. %C A114429 Also the denominator of the largest prime over prime fraction less than 10^n. %H A114429 Abhiram R Devesh, <a href="/A114429/b114429.txt">Table of n, a(n) for n = 1..100</a> %F A114429 a(n) = A092250(n) + 2. - _M. F. Hasler_, Jan 17 2022 %t A114429 Table[i=1;Until[PrimeQ[10^n-i]&&PrimeQ[10^n-i-2],i++];10^n-i,{n,18}] (* _James C. McMahon_, Jul 31 2024 *) %o A114429 (Python) %o A114429 import sympy %o A114429 for i in range(1,100): %o A114429 p=sympy.prevprime(10**i) %o A114429 while not sympy.isprime(p-2): %o A114429 p=sympy.prevprime(p) %o A114429 print(p) %o A114429 # _Abhiram R Devesh_, Aug 02 2014 %o A114429 (PARI) %o A114429 a(n)=my(p=precprime(10^n)); while(!ispseudoprime(p-2),p=precprime(p-1)); return(p) %o A114429 vector(50, n, a(n)) \\ _Derek Orr_, Aug 02 2014 %o A114429 (PARI) apply( {A114429(n,p=10^n)=until(2==p-p=precprime(p-1),);p+2}, [1..22]) \\ twice as fast by avoiding additional ispseudoprime(). - _M. F. Hasler_, Jan 17 2022 %o A114429 (Python) %o A114429 from sympy import prevprime %o A114429 def a(n): %o A114429 p = prevprime(10**n); pp = prevprime(p) %o A114429 while p - pp != 2: p, pp = pp, prevprime(pp) %o A114429 return p %o A114429 print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Jan 17 2022 %Y A114429 Cf. A092250 (a(n)-2: lesser of the pair). %K A114429 base,easy,nonn %O A114429 1,1 %A A114429 _Cino Hilliard_, Feb 13 2006 %E A114429 Corrected by _T. D. Noe_, Nov 15 2006